

Evolutionary Deep Learning Structures for Self-Supervising Efficiency, Latency Reduction, and Intelligent AI Task Propagation

Meera Kapoor

Indian Institute of Technology (IIT) Madras, Chennai, India

Corresponding Author: meera126745@gmail.com

Abstract

The rapid expansion of distributed artificial intelligence systems has intensified the demand for architectures capable of self-supervision, latency-aware decision-making, and intelligent task propagation across heterogeneous environments. Traditional deep learning pipelines often struggle with high computational overhead, rigid supervision requirements, and limited adaptivity when deployed in dynamic, real-time scenarios. This paper proposes an evolutionary deep learning framework designed to autonomously refine model efficiency, minimize execution latency, and propagate tasks intelligently without continuous external oversight. By integrating evolutionary strategies, self-supervision paradigms, and intelligent workload orchestration mechanisms, the proposed architecture achieves dynamic optimization across multiple layers of the learning and execution pipeline. The study further outlines how evolutionary processes enhance model robustness, enable reflective learning, and support adaptive resource allocation across diverse workloads. The findings highlight the transformative potential of integrating evolutionary intelligence within deep learning structures to create self-governing, latency-efficient, and task-aware AI ecosystems that scale seamlessly across emerging computational environments.

Keywords: Evolutionary deep learning, self-supervision, latency reduction, intelligent task propagation, autonomous AI optimization, meta-learning architectures, adaptive neural systems

I. Introduction

The increasing scale, complexity, and heterogeneity of modern AI systems have created a significant need for intelligent architectures capable of self-management, rapid adaptation, and efficient execution. Traditional deep learning models have demonstrated remarkable performance across diverse domains, yet they still depend heavily on static training pipelines, high-volume supervised data, and manually designed optimization strategies. These constraints limit their ability to operate efficiently in dynamic environments where workloads fluctuate, latency requirements intensify, and decision-making processes must be responsive and autonomous. The shift toward continuous, real-time AI operation demands systems that can learn from their own behavior, detect inefficiencies, and evolve distributions of tasks and computational resources without human intervention[1].

Evolutionary deep learning emerges as a powerful paradigm to address these challenges. Inspired by natural selection, evolutionary strategies introduce mechanisms for mutation, recombination, and population-based optimization, enabling models to improve iteratively based on performance outcomes[2]. When integrated into deep neural structures, evolutionary processes create architectures that refine themselves over time, maintaining performance even as the surrounding environment changes. These evolutionary systems can evaluate competing model configurations, select optimal pipelines based on current workload patterns, and adapt their behavior to reduce latency and computational overhead[3].

Self-supervision further enhances the adaptivity of these architectures by allowing models to learn from unlabelled data and infer structure from context. In environments where labeled data is scarce, dynamic, or constantly changing, self-supervised mechanisms enable continuous refinement and knowledge acquisition. Combined with evolutionary principles, self-supervision creates deep learning systems that evolve through internal feedback loops, enabling them to detect inefficiencies, identify emergent patterns, and update their task propagation strategies[4].

Latency reduction plays a central role in the performance of modern AI systems, particularly for real-time analytics, agentic workflows, and edge computation. Evolutionary architectures introduce the ability to monitor latency at multiple levels, optimize execution paths, and restructure computational pipelines to maintain responsiveness under fluctuating workloads.

Such models can adaptively switch between alternative neural pathways, adjust layer operations, or even generate lighter model variants when rapid processing is required[5].

Intelligent task propagation constitutes another critical dimension of autonomous AI ecosystems. In distributed intelligent systems, tasks may need to be delegated across multiple nodes, layers, or agents depending on their characteristics. Evolutionary deep learning structures allow for predictive task routing, enabling models to anticipate workload demands, prioritize execution order, and distribute tasks across optimized computational routes. This capability supports real-time coordination and ensures that system behavior aligns with overarching performance goals[6].

This paper presents a holistic architecture that integrates evolutionary deep learning structures, self-supervising optimization processes, latency-aware decision layers, and intelligent task propagation modules. The following sections explore the theoretical foundations, structural components, operational dynamics, and anticipated performance impacts of this framework. The study aims to illustrate how evolutionary intelligence can transform next-generation AI infrastructures into self-governing, highly efficient, and latency-resilient systems capable of scaling across complex environments[7].

II. Evolutionary Deep Learning Foundations and Self-Supervision Mechanisms

Evolutionary deep learning integrates biological evolution-inspired optimization into neural architectures, enabling adaptive model restructuring and autonomous performance improvement. Unlike traditional gradient-based optimization, which operates within fixed architectural boundaries, evolutionary strategies explore large architectural and parametric search spaces. This capacity allows the system to identify non-linear performance gains, restructure connections, and adjust internal representations in ways unavailable to static training pipelines[8].

Central to evolutionary frameworks is population-based optimization. A population of models or architectural variants coexists, each evaluated according to a fitness function reflecting accuracy,

latency, resource consumption, or other performance metrics. The evolutionary cycle involves selection, mutation, and crossover operations, resulting in increasingly optimized model generations. In dynamic AI environments, this continuous evolution ensures that the most efficient structures survive, while underperforming variants are phased out. Over time, the system develops a repertoire of optimized architectures capable of responding to varying workload patterns[9].

Self-supervision complements this evolutionary adaptation by enabling continuous learning without explicit labels. Through contrastive learning, predictive coding, masked representation learning, and reconstruction tasks, self-supervised mechanisms extract meaningful representations from raw data. This reduces dependence on manual labeling and accelerates adaptation when facing new or evolving data distributions. Self-supervised signals can also serve as internal fitness indicators during evolution, allowing architectures to evaluate representation quality autonomously[10].

The fusion of evolutionary optimization and self-supervision leads to a feedback-driven system where learning is both reflective and adaptive. Models evaluate their own outputs, detect inconsistencies, and generate corrective updates without external triggers. Evolutionary pressure ensures that the most accurate and efficient self-supervised representations persist, creating an ecosystem of continuously improving structures. This synergy gives rise to deep learning models capable of learning in real time, discovering latent structures within datasets, and refining decision-making strategies to match fluctuating environmental demands[11].

III. Latency Reduction through Adaptive Evolutionary Optimization

Latency is a critical determinant of performance in real-time AI systems, particularly those embedded in interactive agents, distributed pipelines, and dynamic multi-task environments. Traditional deep neural networks exhibit fixed computational pathways that do not adapt to runtime conditions. Evolutionary deep learning introduces an adaptive mechanism for restructuring the computational graph to minimize latency while preserving predictive accuracy[12].

Latency-aware evolution begins by monitoring real-time execution delays across neural components, identifying bottlenecks, and generating optimization candidates through mutation operations. These mutations may simplify layers, prune redundant neurons, alter activation functions, or generate compact submodels tailored to current computational constraints. Through selective pressure, the system promotes variants that demonstrate lower latency under similar workloads, gradually shifting the population toward more responsive architectures[13].

Another dimension of latency reduction arises from dynamic path selection. Evolutionary systems maintain multiple neural pathways, each optimized for specific latency-performance trade-offs. During execution, the model can choose pathways that meet real-time constraints, effectively balancing accuracy and speed. This results in a flexible architecture capable of adapting to device-specific computational budgets or fluctuating workload intensities[14].

Evolutionary strategies also support predictive latency optimization. By analyzing historical patterns, the system anticipates upcoming resource bottlenecks and evolves structures proactively. The inclusion of meta-learning layers allows the architecture to generalize latency reduction strategies from previous experiences, enabling rapid adaptation when environmental conditions shift[15].

Through these mechanisms, evolutionary deep learning transforms latency optimization from a static engineering task into a dynamic, self-governing process. The result is a model that maintains responsiveness across varied scenarios and evolves continually to reduce computational overhead while safeguarding performance integrity[16].

IV. Intelligent AI Task Propagation and Autonomous Workflow Adaptation

Intelligent task propagation is fundamental to achieving autonomous behavior in distributed and multi-agent AI systems. Modern workloads often require tasks to be assigned, sequenced, and delegated to different processing units depending on data characteristics, urgency, and

computational availability. Evolutionary deep learning structures introduce predictive and adaptive strategies for optimizing this task flow[17].

At the core of intelligent task propagation lies an evolutionary decision module that evaluates tasks based on priority, complexity, and dependency structures. The system autonomously evolves task-routing strategies that maximize throughput, minimize waiting time, and avoid resource contention. Through reinforcement signals and evolutionary feedback, the architecture learns which propagation strategies yield optimal results under different workload scenarios.

Dynamic workload mapping is another essential component. Evolutionary architectures maintain multiple representations of task flow patterns, enabling the system to detect emerging bottlenecks and reallocate tasks in real time. By evolving contextual embeddings, the model identifies similarities between tasks and routes them through optimized execution paths. This reduces redundancy and enhances overall system efficiency[18].

Predictive propagation further enhances autonomy by forecasting future workload demands and adjusting task assignments preemptively. Using historical task patterns and self-supervised representations, the model anticipates which segments of a pipeline will experience increased load. It then evolves strategies to distribute tasks across alternative nodes or agents, preventing performance degradation[19].

Evolutionary mechanisms also facilitate cross-agent collaboration. In multi-agent ecosystems, intelligent task propagation enables agents to exchange tasks, delegate responsibilities, and synchronize actions based on shared evolutionary signals. This results in emergent coordination patterns that strengthen resilience and increase total system throughput.

Through these mechanisms, evolutionary deep learning structures enable AI systems to manage task flow autonomously, optimize resource utilization, and maintain stable performance in dynamic environments[13].

Conclusion

The integration of evolutionary strategies, self-supervision, latency-aware adaptation, and intelligent task propagation represents a major advancement in the development of autonomous deep learning systems. Traditional AI architectures rely heavily on static design choices, extensive supervision, and manual optimization, making them ill-suited for dynamic, real-time environments. The evolutionary deep learning framework presented in this paper offers a pathway toward fluid, adaptive, and self-regulating systems capable of refining their structure and behavior over time. These systems can learn from unlabeled data, anticipate workload fluctuations, and autonomously manage computational pathways to minimize latency and maximize efficiency. As evolutionary intelligence continues to merge with deep neural computation, the resulting architectures will form the foundation of next-generation AI ecosystems—scalable, reflective, and inherently intelligent.

References

- [1] J. Watts, F. Van Wyk, S. Rezaei, Y. Wang, N. Masoud, and A. Khojandi, "A dynamic deep reinforcement learning-Bayesian framework for anomaly detection," *IEEE Transactions on Intelligent Transportation Systems*, vol. 23, no. 12, pp. 22884-22894, 2022.
- [2] R. V. Rayala, C. R. Borra, P. K. Pareek, and S. Cheekati, "Enhancing Cybersecurity in Modern Networks: A Low-Complexity NIDS Framework using Lightweight SRNN Model Tuned with Coot and Lion Swarm Algorithms," in 2024 International Conference on Recent Advances in Science and Engineering Technology (ICRASET), 2024: IEEE, pp. 1-8.
- [3] J. Mills, J. Hu, and G. Min, "Multi-task federated learning for personalised deep neural networks in edge computing," *IEEE Transactions on Parallel and Distributed Systems*, vol. 33, no. 3, pp. 630-641, 2021.
- [4] M. Khan, "Advancements in Artificial Intelligence: Deep Learning and Meta-Analysis," 2023.
- [5] M. Merouani, M.-H. Leghettas, R. Baghdadi, T. Arbaoui, and K. Benatchba, "A deep learning based cost model for automatic code optimization in tiramisu," PhD thesis, 10 2020, 2020.
- [6] R. V. Rayala, C. R. Borra, P. K. Pareek, and S. Cheekati, "Fortifying Smart City IoT Networks: A Deep Learning-Based Attack Detection Framework with Optimized Feature Selection Using MGS-ROA," in 2024 International Conference on Recent Advances in Science and Engineering Technology (ICRASET), 2024: IEEE, pp. 1-8.
- [7] L. N. AlRawi, A. H. AlBella, and O. I. Ashour, "Investigating the factors that impact e-learning systems in oil and gas industry," in *AIP Conference Proceedings*, 2022, vol. 2400, no. 1: AIP Publishing.
- [8] V. Govindarajan, R. Sonani, and P. S. Patel, "A Framework for Security-Aware Resource Management in Distributed Cloud Systems," *Academia Nexus Journal*, vol. 2, no. 2, 2023.

- [9] H. Allam, J. Dempere, V. Akre, D. Parakash, N. Mazher, and J. Ahamed, "Artificial intelligence in education: an argument of Chat-GPT use in education," in *2023 9th International Conference on Information Technology Trends (ITT)*, 2023: IEEE, pp. 151-156.
- [10] C. Ed-Driouch, F. Mars, P.-A. Gourraud, and C. Dumas, "Addressing the challenges and barriers to the integration of machine learning into clinical practice: An innovative method to hybrid human—machine intelligence," *Sensors*, vol. 22, no. 21, p. 8313, 2022.
- [11] J. E. Dyment and T. G. Potter, "Is outdoor education a discipline? Provocations and possibilities," *Journal of Adventure Education and Outdoor Learning*, vol. 15, no. 3, pp. 193-208, 2015.
- [12] S. Khairnar, G. Bansod, and V. Dahiphale, "A light weight cryptographic solution for 6LoWPAN protocol stack," in *Science and Information Conference*, 2018: Springer, pp. 977-994.
- [13] R.-H. Hsu *et al.*, "A privacy-preserving federated learning system for android malware detection based on edge computing," in *2020 15th Asia Joint Conference on Information Security* (AsiaJCIS), 2020: IEEE, pp. 128-136.
- [14] S. Mahadevan, "Average reward reinforcement learning: Foundations, algorithms, and empirical results," *Machine learning*, vol. 22, no. 1, pp. 159-195, 1996.
- [15] R. V. Rayala, C. R. Borra, P. K. Pareek, and S. Cheekati, "Hybrid Optimized Intrusion Detection System Using Auto-Encoder and Extreme Learning Machine for Enhanced Network Security," in 2024 International Conference on Recent Advances in Science and Engineering Technology (ICRASET), 2024: IEEE, pp. 1-7.
- [16] R. V. Rayala, C. R. Borra, P. K. Pareek, and S. Cheekati, "Mitigating Cyber Threats in WSNs: An Enhanced DBN-Based Approach with Data Balancing via SMOTE-Tomek and Sparrow Search Optimization," in 2024 International Conference on Recent Advances in Science and Engineering Technology (ICRASET), 2024: IEEE, pp. 1-8.
- [17] G. Bhagchandani, D. Bodra, A. Gangan, and N. Mulla, "A hybrid solution to abstractive multi-document summarization using supervised and unsupervised learning," in *2019 International Conference on Intelligent Computing and Control Systems (ICCS)*, 2019: IEEE, pp. 566-570.
- [18] O. Oyebode, "Federated Causal-NeuroSymbolic Architectures for Auditable, Self-Governing, and Economically Rational AI Agents in Financial Systems," *Well Testing Journal*, vol. 33, pp. 693-710, 2024.
- [19] R. V. Rayala, C. R. Borra, P. K. Pareek, and S. Cheekati, "Securing IoT Environments from Botnets: An Advanced Intrusion Detection Framework Using TJO-Based Feature Selection and Tree Growth Algorithm-Enhanced LSTM," in 2024 International Conference on Recent Advances in Science and Engineering Technology (ICRASET), 2024: IEEE, pp. 1-8.