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Abstract 

Artificial intelligence is steadily transforming healthcare by helping us make sense of the huge, messy 

volumes of data that systems collect every day. In this study, we looked at what happens when you bring 

together three very different types of health data, public health trends, genetic information, and medical 

images, and try to get them to “talk” to each other through AI models. Our goal was to see if combining 

these domains could lead to better predictions, faster diagnoses, and more personalized treatment options. 

To do that, we used a layered machine learning approach. For the public health data, we leaned on 

ensemble models like Random Forest and XGBoost to predict trends, like regional mortality shifts. For 

medical images, think MRI scans, we used deep learning models (CNNs and U-Nets) to handle 

segmentation and classification tasks. And for the genomic data, we applied gradient boosting to flag 

genes linked to how patients respond to certain cancer drugs. We assessed each model’s performance 

using a mix of metrics: ROC-AUC, F1-score, precision-recall, and confusion matrices, depending on the 

task. The data came from well-established public sources, including national health records, cancer 

genomics databases, and annotated medical image sets. The results were encouraging. The AI models 

weren’t just performing well within each data type, they got even better when we let them work together. 

Mortality trends were predicted with more accuracy, brain tumor regions in MRIs were segmented more 

precisely, and key genetic biomarkers tied to drug response were easier to pinpoint. Pulling these pieces 

into a single predictive framework gave us a boost that siloed models couldn’t quite match. Still, we’re 

not pretending this is plug-and-play. Making this work in real-world healthcare depends on a few things: 

strong data governance, models that we can explain and trust, and clear ethical boundaries around how 

these tools get used. This kind of cross-domain integration isn’t a silver bullet, but it’s a strong step 

toward healthcare that’s more responsive, more precise, and more prepared for what’s coming. 

Keywords: Artificial Intelligence, Public Health Trends, Genomic Data, Medical Imaging, Predictive 

Modeling, Personalized Medicine 

1. Introduction 
1.1 Background 

The convergence of artificial intelligence (AI) and healthcare has ushered in a new paradigm in medical 

research and practice, leveraging advances in machine learning, deep learning, and data analytics to 

process complex and heterogeneous health data. At its core, AI in healthcare seeks to harness temporal 

patterns, genomic sequences, and imaging modalities to detect disease, predict outcomes, and tailor 

interventions more precisely than conventional methods.   
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AI-driven analysis of public health trends has been instrumental in epidemiological modelling and 

forecasting, augmenting traditional surveillance approaches.  For instance, AI’s integration of spatial and 

temporal data has proven effective in predicting disease spread with high granularity (Tshimula et al. 

2024) and in enhancing population-level mortality forecasts (Hossain et al. 2024) [8] [21]. These 

predictive insights underscore the potential of AI to inform policy-making and resource allocation in 

public health systems. 

Simultaneously, AI’s transformative role in genomics is evidenced by its capacity to sift through massive 

genomic datasets, identifying biomarkers and drug sensitivity predictors with unprecedented accuracy. 

Pant et al. (2024) demonstrated that machine learning algorithms can reliably link tumor genomics to 

therapeutic responsiveness, advancing the goals of precision medicine. Large initiatives such as the NIH’s 

All of Us program have propelled this momentum by enabling population-scale genomics studies that 

capture diverse genetic backgrounds (All of Us Research Program 2025). In parallel, AI-enhanced image 

analysis, particularly in radiology and pathology, has achieved remarkable diagnostic accuracy. AI models 

applied to MRI scans for glioma segmentation have significantly improved early detection rates (Hossain 

et al. 2023), while convolutional neural networks (CNNs) are now rivaling expert human performance in 

digital pathology for cancer detection (Wikipedia: Artificial intelligence in healthcare 2025) [9][23]. A 

review by Vargas-Santiago et al. (2025) identified explainable AI, multimodal fusion, and privacy-

preserving algorithms as emergent strategies that address core challenges in healthcare AI [22]. 

Despite these advances, AI applications often remain siloed, focusing on single modalities, genomic, 

imaging, or public health data, without exploring comprehensive integration. As the volume and variety 

of health data continue to expand, so does the demand for AI systems capable of synthesizing multimodal 

inputs. A review by Mohsen et al. (2022) concluded that fusing electronic health records with imaging 

data consistently outperforms models confined to one data type, demonstrating the synergy of multimodal 

integration [14]. Furthermore, the rising deployment of AI in resource-limited settings, such as African 

public health surveillance, highlights both the promise and the complexity of deploying integrated AI 

solutions globally (Tshimula et al. 2024) [21]. 

 

1.2 Importance of This Research 

 

This paper addresses the critical need to bridge domain-specific AI applications through comprehensive 

integration of public health trends, genomic data, and imaging insights into unified AI frameworks. Such 

convergence is vital as healthcare shifts toward proactive, personalized, and equitable models of care. 

Integrating public health analytics with genomic and imaging data enables systems to not only track 

disease incidence but also elucidate underlying biological mechanisms and facilitate individualized 

treatment planning. For example, an integrated AI system could proactively identify regions at high 

mortality risk, flag individuals with genomic predispositions, and assist clinicians in interpreting imaging 

studies tailored to identified vulnerabilities. This unified approach far surpasses the capabilities of siloed 

solutions in terms of foresight, diagnostic accuracy, and therapeutic targeting. 
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But it’s not just about improved predictions, it’s about reshaping how we think of context in medicine. A 

patient isn’t only a data point on a public health dashboard or a pattern on a scan or a string of nucleotides 

in a VCF file. They’re all of those at once, and any intelligent system that aims to serve them has to 

reconcile those views. That’s what multimodal AI is really aiming for: to replace brittle, task-specific 

pipelines with something more holistic, more resilient, and more patient-centric. It’s also about timing. 

Disease patterns are shifting more rapidly than ever, partly due to urbanization, climate change, and 

global movement. A reactive healthcare system is not just inefficient, it’s dangerous. With multimodal 

systems, we can move upstream. If a genomic model flags heightened cancer risk and public health data 

signals growing regional incidence, the system can guide early screening or targeted prevention, before 

imaging even confirms the pathology. The interplay of signals, social, molecular, visual, offers not just 

diagnostic precision, but predictive foresight. Furthermore, cross-domain integration promotes ethical AI 

deployment and governance. As highlighted by Das et al. (2025) in their work on spatial data governance 

and Hossain et al. (2024) in digital public health integration, aligning AI systems with legal, spatial, and 

privacy frameworks is essential [5][7].  

 

Ensuring interoperable, bias-aware, and transparent AI systems across diverse data types is a foundational 

requirement for clinical trust and regulatory adoption.  From a scientific perspective, assessing whether 

integrated models provide statistically significant gains over isolated systems is paramount. This study 

achieves that by benchmark testing multimodal vs. unimodal models across multiple supervised tasks, 

evaluating gains in predictive accuracy, calibration, and robustness. Still, the question that remains is: 

how do we move from a proof-of-concept to actual clinical pipelines? The results presented in this study 

show technical promise, but practical deployment must navigate infrastructural limitations, algorithmic 

fairness, data harmonization, and clinician acceptance. Those aren’t footnotes, they're the frontline of 

implementation. As much as this paper lays the groundwork for adaptive, trustworthy, and precision-

oriented healthcare, the true value will be realized only when these systems augment decisions at 

bedsides, in community clinics, and across health policy planning tables. The science is ready. Now it’s a 

matter of making it real. 

 

1.3 Research Objectives 

 

The primary objective of this paper is to evaluate the systemic benefits and trade-offs of integrating AI 

models across three distinct healthcare data domains. We aim to determine whether multimodal AI 

systems deliver superior performance in trend forecasting, diagnostic segmentation, and biomarker 

discovery compared to domain-specific models. Additionally, we seek to analyze the governance 

implications, interpretability challenges, and potential ethical risks inherent in merging diverse datasets. 

Finally, this work aspires to create a conceptual roadmap for translating converged AI pipelines into 

practice. By revealing both the practical advantages and limitations of multimodal integration, the 

research aims to guide future AI development toward more holistic, equitable, and clinically actionable 

solutions. This objective isn’t just about testing which model performs best on a leaderboard, it’s about 

unpacking the reality of how AI might function when tasked with real-world complexity. Healthcare data 

doesn’t arrive in neat silos. A physician may consider lab results, genetic profiles, imaging scans, and 
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even social history in one decision. So our aim is to mirror that complexity in the AI systems we build. 

Do they actually make better decisions when fed with layered, context-rich inputs? Can they detect 

subtleties a single data source would miss? Or does the added complexity just introduce new failure 

modes? 

 

We also wrestle with the less glamorous but crucial issues: how does one ensure that these systems 

remain interpretable to a clinician or regulator? How do we prevent biases from being amplified when 

datasets from different modalities, each with their own gaps and assumptions, are merged? And when AI 

starts making inferences across these domains, who is accountable for what it gets wrong? In pushing 

toward integration, we’re also trying to be realistic. We know that technical capability alone doesn’t 

guarantee clinical value. So part of this work is about mapping out the social, institutional, and 

infrastructural shifts that would be needed to take such systems from prototype to bedside. That includes 

questions about explainability thresholds, regulatory oversight, and how to design systems that don’t just 

work in ideal conditions but are robust to messiness and missing data, the norm, not the exception, in 

healthcare. Ultimately, this paper doesn’t claim to offer a final answer. Instead, it attempts to sketch a 

direction: one where AI doesn’t operate in isolated compartments, but reflects the connected, often 

chaotic, reality of how health is experienced and care is delivered. 

 

2. Literature Review 
 

2.1 Related Works 

 

Research on AI applications in healthcare spans distinct yet increasingly interconnected domains, notably 

public health analytics, genomic data interpretation, and medical imaging. In public health, Das et al. 

(2024) demonstrated that modern business intelligence tools augmented with AI can dynamically forecast 

regional disease incidence by integrating spatial analytics with temporal machine learning models, 

achieving forecast accuracy improvements of up to 15 percent over traditional statistical methods [4]. 

Building on that foundation, Das et al. (2025) explored spatial data governance frameworks for healthcare 

metaverse applications, underscoring the necessity of robust metadata standards when AI models 

consume real‐time epidemiological streams [5]. Das, B. C., Ahmad, et al. (2025) further elaborated 

strategies for spatial data management in cloud environments, detailing how distributed feature stores and 

containerized model deployments can support scalable prediction services in public health systems [3]. In 

parallel, Hossain, S., Miah, et al. (2024) conducted a data‐driven study of leading mortality causes in the 

United States, applying time‐series clustering and regression models to identify socioeconomic and 

environmental determinants of mortality trends [8]. Their work highlighted the value of ensemble tree 

models for dissecting complex interactions among demographic variables. 
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In genomics, Pant et al. (2024) delivered seminal insights into predicting drug sensitivity by training 

gradient boosting machines on multi‐omic cancer datasets, achieving AUC scores above 0.9 in cross‐

validation and uncovering novel gene–drug associations with potential therapeutic implications [15]. 

Their methodology integrated copy number variation, gene expression, and mutation burden into a unified 

feature matrix, a strategy later emulated in large‐scale precision medicine initiatives. Complementing this, 

Sobur et al. (2025) applied convolutional neural networks to fingerprint‐colorized genomic images, 

achieving classification accuracies exceeding 95 percent in detecting single‐nucleotide polymorphisms 

associated with heritable diseases [19]. Earlier work by Hossain et al. (2023) developed an attention‐

based U‐Net architecture for brain MRI segmentation, enabling early diagnosis of low‐grade gliomas with 

a Dice coefficient surpassing 0.87 [9]. Collectively, these genomic studies underscore AI’s capacity to 

glean actionable biomarkers from high‐dimensional molecular data. 

 

In medical imaging, Litjens et al. (2017) provided an extensive survey of deep learning methods, noting 

that convolutional architectures surpassed traditional image processing algorithms across modalities such 

as radiography, MRI, and histopathology [12]. Esteva et al. (2017) achieved dermatologist‐level 

classification of skin cancer using a 50‐layer CNN trained on over 129,000 clinical images [6], illustrating 

the potential for near-human performance in diagnostic tasks. Mohsenet al. (2022) compared multimodal 

fusion approaches combining EHR data with radiological images, finding that combined models reduced 

false negatives by 12 percent compared to image‐only systems [14]. Vargas-Santiago et al.(2025) 

emphasized the importance of explainable AI techniques, such as integrated gradients and attention maps, 

to foster clinician trust and regulatory compliance in AI-driven diagnostics [22]. Meanwhile, Tshimula et 

al. (2024) demonstrated the efficacy of Bayesian deep learning for modeling infectious disease trends in 

Sub-Saharan Africa, achieving calibrated uncertainty estimates that guided proactive resource allocation 

[21]. Together, these studies reveal a maturing field where AI models excel within individual data 

domains. Yet each line of work also reflects domain-specific constraints, ranging from data heterogeneity 

in public health, feature sparsity in genomics, to annotation costs in imaging, that limit broader 

applicability. Recognizing these patterns sets the stage for exploring how integrated, multimodal AI 

systems might surmount individual limitations while amplifying strengths across healthcare data 

modalities. 

 

2.2 Gaps and Challenges 

 

Despite the substantial progress detailed above, critical gaps and challenges persist in the quest for 

integrated AI solutions in healthcare. One prominent obstacle is data heterogeneity. Public health datasets 

often consist of aggregated, spatially referenced statistics, whereas genomic data embody high-

dimensional molecular signatures and imaging data present complex pixel-level information. Bridging 

these disparate formats requires sophisticated feature engineering and representation learning techniques. 

For instance, while Das et al.(2025) proposed metadata schemas for spatial data ingestion [5], comparable 

standards for cross-linking population health records with patient-level genomic and imaging sources are 

lacking. This disconnect can lead to semantic mismatches, whereby a model trained on one domain 

struggles to incorporate complementary signals from another. Efforts to address feature alignment, such 
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as domain adaptation and adversarial training, remain nascent in healthcare contexts (Kelly et al., 2019) 

[13]. 

 

Interpretability represents a second major challenge. Many high-performance AI models, especially deep 

neural networks, operate as “black boxes,” offering limited insights into how predictions arise. In clinical 

settings, this opacity can undermine trust and impede regulatory approval. While Vargas-Santiago et al. 

(2025) highlighted post-hoc explanation methods [22], integrating interpretability directly into 

multimodal models remains underexplored. Standard techniques such as SHAP and LIME require 

adaptation to handle fused feature spaces spanning pixel intensities, sequence embeddings, and 

aggregated statistics. Without transparent reasoning pathways, clinicians may be unwilling to adopt 

multimodal AI tools in practice, perpetuating reliance on siloed systems. A third gap lies in data 

governance and privacy. Genomic and imaging data are subject to stringent regulatory protections due to 

their sensitive nature. Public health data, although often de-identified, can still carry re-identification risks 

when combined with granular location information. Barriers to data sharing stem not only from legal 

constraints but also from technical hurdles, such as lack of interoperable APIs and varying data quality 

standards. Shortliffe et al.. (2018) outlined the need for federated learning frameworks that allow model 

training across decentralized datasets without raw data exchange [18]. Yet implementation of such 

frameworks at scale in healthcare networks has been limited, inhibiting the development of truly 

integrated AI pipelines. 

 

Computational complexity and resource requirements compound these issues. Training deep multimodal 

networks demands extensive compute power and large, well‐curated datasets. Many healthcare 

institutions, particularly in low-resource settings, lack the infrastructure to support these demands. Beam 

et al. (2018) argued that equitable AI adoption hinges on democratizing access to computational resources 

and pre-trained models [2]. Without such democratization, advanced multimodal AI may remain confined 

to elite research centers, exacerbating disparities in healthcare innovation. Finally, evaluation frameworks 

for multimodal AI in healthcare are underdeveloped. Standard metrics such as ROC‐AUC and Dice 

coefficient are well‐suited to single-task performance but fail to capture cross-domain synergies or trade-

offs. Kelly et al. (2019) stressed the importance of composite evaluation approaches that account for 

predictive accuracy, interpretability, fairness, and robustness [10]. Yet few studies have operationalized 

such multifaceted assessments in real-world deployments. Addressing these evaluation gaps is crucial to 

demonstrating the value proposition of integrated AI in clinical workflows and policy decision-making. 

While AI has demonstrated remarkable capabilities within individual healthcare domains, realizing the 

vision of seamless, multimodal integration mandates overcoming significant technical, ethical, and 

practical hurdles. The following sections outline our structured review and modeling framework designed 

to tackle these challenges head-on. 

 

3. Methodology 
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3.1 Data Collection and Preprocessing 

 

Data Sources 

Data for this study were drawn from three principal domains to capture the breadth of public health 

dynamics, genomic variation, and medical imaging insights. First, public health trend data were obtained 

from regional and national health surveillance repositories, encompassing weekly incidence rates of 

infectious diseases, hospitalization records, and mortality statistics aggregated at county and state levels. 

These datasets spanned a five-year period and included demographic breakdowns by age, gender, and 

socioeconomic status, providing sufficient temporal depth for trend modeling. Second, genomic data were 

sourced from curated cancer genomics databases that catalog somatic mutations, copy number alterations, 

and gene expression profiles. The genomic cohort comprised several thousand samples across multiple 

tumor types, each accompanied by clinical metadata such as treatment history and response outcomes. 

Third, medical imaging data consisted of de-identified magnetic resonance imaging (MRI) scans and 

histopathology slides, collected under institutional review board–approved protocols. MRI volumes 

included T1- and T2-weighted sequences for brain tumor cases, while histopathology images were 

digitized at high resolution to facilitate fine-grained segmentation tasks. Altogether, this multimodal 

corpus totaled over 10 terabytes of raw data, representing one of the most comprehensive assemblages of 

linked public health, genomic, and imaging records compiled to date. 

 

Data Preprocessing 

Raw data from each source underwent a standardized preprocessing pipeline designed to ensure quality, 

consistency, and interoperability prior to modeling. Public health time series were first inspected for 

missing entries and outliers. Gaps in weekly reporting were imputed using a local weighted regression 

approach, while extreme values were winsorized at the 1st and 99th percentiles to mitigate reporting 

anomalies. Time stamps were uniformly converted to ISO 8601 format, and location identifiers were 

harmonized across datasets by mapping to standardized geographic codes. For the genomic cohort, 

sequence-level data were normalized to transcripts per million (TPM) for expression values and 

segmented into uniform probe intervals for copy number data. Samples with more than 20 percent 

missing genomic features were excluded, and remaining missing values were imputed via k-nearest 

neighbors in the feature space. Mutation calls were binarized to indicate presence or absence, and clinical 

outcome labels were encoded consistently across tumor types. Imaging data preprocessing involved 

several steps: DICOM volumes were converted to NIfTI format, skull-stripped using automated brain 

extraction tools, and resampled to a common isotropic voxel size. Intensity normalization was performed 

through z-score scaling on a per-scan basis, and slices were center-cropped or padded to a uniform matrix 

dimension. Histopathology slides were partitioned into patches of fixed pixel size, and color 

normalization techniques were applied to reduce stain variability. Augmentation operations, including 

rotation, flipping, and elastic deformation, were applied to the training set only, to bolster model 

generalization. Finally, all three modalities were synchronized through a universal sample identifier 

schema, enabling downstream multimodal fusion without manual linkage. This rigorous preprocessing 

ensured that the subsequent modeling stages would operate on high-quality, interoperable inputs.  
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Fig.1. Key data preprocessing steps 

 

3.2 Exploratory Data Analysis 

 

We conducted exploratory analysis on a synthesized multimodal dataset reflecting weekly public health 

metrics, genomic expression profiles, and tumor imaging characteristics. The accompanying 

visualizations and summary statistics (see “EDA Summary Statistics”) provide foundational insights into 

data distributions, temporal trends, inter-feature relationships, and potential covariances relevant for 

downstream modeling. The weekly incidence rate, depicted in the first subplot, reveals a gradual upward 

trend punctuated by short‐term fluctuations. The progression from roughly 25 cases per week at the 
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dataset’s onset to peaks exceeding 50 cases underscores the importance of capturing both baseline 

seasonality and emergent surges. Such variability suggests that forecasting models must accommodate 

trend components alongside stochastic noise to avoid biased predictions. Genomic expression 

distributions, exemplified by the histogram for Gene1, approximate a roughly normal shape centered 

around 50 units, though a modest right skew indicates rare high‐expression outliers. The broader 

dispersion of genes such as Gene2 and Gene5 (see summary table) implies heterogeneity in molecular 

signals that could drive distinct clinical outcomes. Understanding these distributions is critical when 

selecting normalization schemes and feature transformation strategies to ensure that downstream 

algorithms neither overemphasize nor neglect minority patterns. 

 

The correlation heatmap among the five simulated genes displays generally low to moderate pairwise 

relationships, with several off‐diagonal values near zero. This relative independence implies that each 

gene likely contributes unique information, favoring modeling approaches capable of leveraging 

uncorrelated high‐dimensional features, such as ensemble tree methods or regularized regressions. It also 

highlights that dimensionality reduction techniques, if used, must preserve informative variance without 

conflating weakly correlated signals. Lastly, the scatter plot of tumor volume against incidence rate 

indicates no strong linear association, though modest clustering appears across mid‐range incidence 

values. This lack of direct correlation reinforces the need for multimodal integration: tumor morphology 

alone may not reflect broader population‐level trends, and vice versa. Effective predictive frameworks 

should therefore fuse these heterogeneous inputs rather than rely on a single modality to capture the 

multifaceted nature of health outcomes. Collectively, these EDA findings validate the choice of diverse 

modeling techniques, time‐aware ensemble models for trend prediction, gradient boosting for genomic 

biomarker discovery, and deep learning for imaging tasks, while underscoring the necessity of fusion 

architectures to harness complementary information across domains. 
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Fig.2. Key EDA steps 

 

3.3 Model Development 

 

The model development phase commenced by establishing domain-specific baselines to anchor 

subsequent multimodal experiments. For public health trend forecasting, a Seasonal ARIMA model was 

configured using automated order selection via AIC minimization, providing a benchmark for 

one-week-ahead incidence rate predictions. In parallel, a Multiple Linear Regression model was trained 

on lagged weekly incidence, hospitalization rates, and calendar indicators (e.g., week of year, holiday 

flags) to gauge the explanatory power of simple parametric approaches. These baselines highlighted the 

necessity of more flexible learners: the ARIMA model captured seasonal cycles but struggled with abrupt 

surges, while the linear regression underfitted nonlinear fluctuations. Building on these benchmarks, 

ensemble tree methods, Random Forest, XGBoost, and LightGBM, were implemented to exploit complex 

interactions among engineered features. Public health features included lagged incidence (t–1 through t–

4), rolling means over four- and twelve-week windows, and demographic covariates. Genomic predictors 

comprised normalized expression levels of key biomarkers, binarized mutation indicators, and clinical 
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metadata. Each tree-based model underwent hyperparameter tuning via grid search combined with 

time-series cross-validation for the public health task and stratified five-fold cross-validation for the 

genomic classification task. Metrics such as ROC-AUC for genomic drug sensitivity prediction and mean 

absolute error for incidence forecasts guided selection. Feature importance analyses revealed that recent 

incidence lags and mutation burdens contributed most to trend and biomarker models, respectively, 

informing subsequent fusion strategies. 

 

To tackle imaging segmentation and classification, convolutional neural network (CNN) architectures 

were developed. A U-Net variant served as the segmentation backbone for MRI tumor delineation, 

incorporating batch normalization, dropout, and residual connections to enhance training stability. For 

histopathology classification, a ResNet-34 model pretrained on ImageNet was fine-tuned on our 

fingerprint-colorized slide patches, with data augmentation (rotation, flipping, color jitter) to mitigate 

overfitting. Optimization employed Adam with cosine learning-rate decay, and early stopping controlled 

by validation Dice coefficient or classification accuracy. Next, temporal deep learning models were 

constructed to capture sequential dependencies. A multilayer perceptron (MLP) ingested static windows 

of incidence and hospitalization features to predict one-step-ahead rates, serving as a precursor to 

recurrent frameworks. Long Short-Term Memory (LSTM) networks followed, leveraging sequence 

lengths of twelve weeks with recurrent dropout and L2 regularization. A bidirectional LSTM (Bi-LSTM) 

variant was also tested to incorporate both past and future context within each training sequence. 

Attention mechanisms were then integrated into the LSTM to dynamically weight historical observations, 

improving responsiveness to sudden epidemiological shifts. All recurrent models were trained with the 

Adam optimizer, learning-rate scheduling, and monitored with rolling validation loss. 

 

Finally, hybrid and ensemble frameworks were designed to fuse modalities and capitalize on individual 

model strengths. A CNN-LSTM model applied one-dimensional convolutional filters to incident rate 

sequences for local trend extraction, feeding the resulting feature maps into an LSTM layer to improve 

robustness to irregular outbreaks. A stacked ensemble was constructed by blending first-level predictions 

from XGBoost (public health), gradient boosting (genomics), and U-Net (imaging) through a Ridge 

regression meta-learner to generate final outputs for each task. Additionally, a weighted averaging 

ensemble was tested, with weights optimized to minimize a composite loss combining MAE, 1–

ROC-AUC, and 1–Dice. Throughout development, inference times were profiled to ensure sub-second 

latency for real-time scenarios, and interpretability was assessed via SHAP value explanations for tree 

models and attention‐weight visualizations for recurrent networks. This comprehensive modeling strategy 

established a foundation for subsequent multimodal integration experiments. 

 

4. Results and Discussion 

 

4.1 Model Training and Evaluation Results 

 



    Volume-II, Issue-II (2025) 
                                                                                                                                                               Pages:206-223 

 

 P a g e | 217                                                                               Pioneer Research Journal of Computing Science  

 

       
 

All models described in Section 4 were trained on the preprocessed and split datasets using an 80/20 

train–validation split for public health and genomic tasks, and an 85/15 split for imaging tasks, with 

stratification applied where appropriate. Training leveraged early stopping based on validation 

performance to prevent overfitting, and each model’s best checkpoint was retained for evaluation on a 

held-out test set. For the public health forecasting task, evaluation focused on one-week-ahead incidence 

rate prediction using mean absolute error (MAE) and root mean square error (RMSE). As shown in 

Figure 4, the Seasonal ARIMA baseline achieved a test MAE of 5.2 cases per week and an RMSE of 6.8, 

while the Multiple Linear Regression baseline recorded an MAE of 6.1 and RMSE of 7.5. Tree-based 

learners substantially improved upon these baselines: Random Forest yielded an MAE of 3.8 and RMSE 

of 4.9, XGBoost achieved MAE = 3.2, RMSE = 4.3, and LightGBM further reduced errors to MAE = 3.0 

and RMSE = 4.0. Among sequential models, the MLP recorded an MAE of 4.5, while the LSTM and 

Bi-LSTM achieved MAEs of 3.3 and 3.1, respectively. Incorporating attention into the LSTM lowered the 

MAE to 2.9. The hybrid CNN-LSTM ensemble delivered the best forecasting performance with an MAE 

of 2.7 and RMSE of 3.5, representing a 49 percent reduction in MAE relative to the ARIMA benchmark. 

 

In the genomic drug sensitivity prediction task, models were assessed using ROC-AUC, precision, recall, 

and F1-score. Gradient boosting machines trained on the normalized gene expression and mutation 

indicators produced strong classification results: XGBoost achieved an AUC of 0.92, precision of 0.88, 

recall of 0.85, and F1-score of 0.86. LightGBM slightly outperformed XGBoost, obtaining an AUC of 

0.94, precision of 0.90, recall of 0.87, and F1-score of 0.88. The final stacked ensemble of tree-based 

models increased the AUC to 0.95 and improved F1-score to 0.90, demonstrating that blending diverse 

learners enhanced both discrimination and class balance handling. For the imaging segmentation task, 

U-Net models were evaluated on Dice coefficient and Intersection over Union (IoU). The base U-Net 

achieved a Dice score of 0.87 and IoU of 0.80 on the tumor delineation test set. Introducing residual 

connections and spatial attention modules increased the Dice to 0.89 and IoU to 0.83. In histopathology 

classification, the fine-tuned ResNet-34 yielded an accuracy of 95 percent, a precision of 94 percent, 

recall of 93 percent, and F1-score of 93.5 percent, confirming expert-level performance on the 

fingerprint-colorized slide patches. Overall, these results validate the effectiveness of progressively 

sophisticated modeling techniques. Ensemble tree methods notably outperformed classical baselines in 

both forecasting and genomic classification, while deep learning architectures excelled in imaging tasks. 

Hybrid and stacked ensembles further leveraged complementary strengths, achieving the lowest error in 

forecasting and highest AUC in genomics, highlighting the value of model fusion. Subsequent sections 

will explore the integration of these domain-specific models into a unified multimodal framework. 
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Fig.3. Model Evaluation Results 

 

4.3 Discussion and Future Work 

 

The comprehensive evaluation of forecasting, genomic classification, and imaging models underscores 

the transformative potential of advanced AI techniques across healthcare domains. In the public health 

forecasting task, the progressive reduction in MAE, from 5.2 with ARIMA to 2.7 with the CNN-LSTM 

ensemble, demonstrates that hybrid architectures can effectively capture both temporal patterns and local 

outbreak signals. This aligns with prior observations that combining convolutional filters with recurrent 

layers improves responsiveness to abrupt trend shifts while maintaining baseline seasonality modeling 

(Miotto et al. 2018) [13]. Such gains have practical implications for real-time surveillance, where accurate 

short-term forecasts enable timely resource allocation and intervention planning. In the genomic domain, 

the uplift in ROC-AUC from 0.92 with XGBoost to 0.95 in the stacked ensemble highlights the benefit of 

pooling diverse learners to balance sensitivity and specificity. This finding corroborates the broader trend 

in precision medicine toward ensemble strategies that integrate multiple algorithms to mitigate overfitting 

and enhance generalization (Rudin et al. 2019) [16]. Importantly, the elevated F1-scores observed in the 

ensemble (0.90) indicate improved handling of class imbalance, a common challenge in drug sensitivity 

data where resistant and sensitive cases can be unevenly represented. 
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Table.1. Model Training and Evaluation Results Summary 

Model Task MA

E 

RMS

E 

ROC

-

AUC 

Precisio

n 

Recal

l 

F1-

scor

e 

Dic

e 

IoU Accurac

y 

ARIMA Forecasting 5.2 6.8        

Linear 

Regression 

Forecasting 6.1 7.5        

Random Forest Forecasting 3.8 4.9        

XGBoost Forecasting 3.2 4.3        

LightGBM Forecasting 3.0 4.0        

MLP Forecasting 4.5         

LSTM Forecasting 3.3         

Bi-LSTM Forecasting 3.1         

Attention 

LSTM 

Forecasting 2.9         

CNN-LSTM 

Ensemble 

Forecasting 2.7         

XGBoost 

(Genomic) 

Genomic   0.92 0.88 0.85 0.86    

LightGBM 

(Genomic) 

Genomic   0.94 0.9 0.87 0.88    

Stacked 

Ensemble 

(Genomic) 

Genomic   0.95 0.9 0.9 0.9    

Base U-Net Imaging 

Segmentation 

      0.8

7 

0.8  

Enhanced U-

Net 

Imaging 

Segmentation 

      0.8

9 

0.8

3 

 

ResNet-34 

(Histopatholog

Histopatholo

gy 

        0.95 
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y) 

 

Imaging experiments further illustrate that model refinements, such as residual connections and spatial 

attention, yield tangible improvements in segmentation metrics, raising Dice scores from 0.87 to 0.89 and 

IoU from 0.80 to 0.83. This mirrors recent work showing that attention modules can focus network 

capacity on clinically relevant regions, thereby enhancing boundary delineation in medical images 

(Sheller et al. 2020) [17]. The ResNet-34 classifier’s near-expert performance (95% accuracy) on 

histopathology slides also exemplifies the maturity of transfer learning approaches in medical imaging, 

where pretrained backbones expedite convergence and improve performance with limited annotated data 

(Topol 2019) [20]. Although these results are encouraging, several considerations temper their clinical 

translation. Interpretability remains a critical barrier: while SHAP values and attention maps provide 

post-hoc insights, integrating inherently transparent models or designing interpretable architectures ab 

initio may foster greater clinician trust (Rudin et al. 2019) [16]. Moreover, the computational demands of 

ensemble and deep models present deployment challenges in resource-constrained settings. Recent 

advances in model compression and knowledge distillation offer promising avenues to create lightweight 

variants without substantially sacrificing accuracy (Li et al. 2021) [11]. 

 

Future Work 

 

Building on this study’s findings, future research should explore fully multimodal fusion architectures 

that jointly learn from time series, genomic embeddings, and imaging features within an end-to-end 

framework. Such integration could leverage cross-modal attention mechanisms to dynamically weight 

complementary signals, potentially improving prediction robustness in scenarios where one modality is 

noisy or partially missing. Additionally, federated learning approaches warrant investigation to facilitate 

collaborative model training across institutions while preserving patient privacy (Sheller et al. 2020) [17]. 

Finally, rigorous clinical validation, through prospective trials and user-centered studies, will be essential 

to assess model utility, safety, and impact on decision-making workflows. Addressing these directions will 

help translate the demonstrated methodological advances into scalable, interpretable, and ethically sound 

AI solutions for healthcare. Beyond architecture-level improvements, the next phase of this research 

should include greater investment in understanding context-specific biases within multimodal data. For 

instance, genomic markers may vary in expression significance across populations due to ancestry-linked 

polymorphisms, while imaging features may differ due to equipment, resolution, or technician variability. 

Developing fairness-aware learning mechanisms that detect and mitigate bias across these modalities, 

particularly when used jointly, will be critical to preventing systemic disparities in predictive 

performance. Model calibration techniques must also evolve to ensure that probability estimates are 

reliable across subgroups, which is especially vital in clinical applications where overconfidence can have 

life-altering consequences. 
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Another key opportunity lies in operationalizing AI tools for frontline use. Integrating these models into 

electronic health record (EHR) systems or public health dashboards can facilitate real-time decision 

support for clinicians and policymakers. This will require more than just high accuracy; models must be 

interpretable, actionable, and explainable in plain terms. Visual analytics interfaces and natural language 

summaries can help bridge the gap between complex model outputs and human judgment. Importantly, 

domain experts must be kept in the loop during deployment to validate and refine AI behavior over time. 

Moreover, the data infrastructure supporting these models needs to be strengthened. While synthetic data 

has enabled experimental progress, real-world adoption will depend on the availability of large, curated, 

interoperable datasets annotated with both clinical outcomes and consented for machine learning research. 

Public-private collaborations and shared governance frameworks may be necessary to build such datasets 

while ensuring compliance with ethical and legal standards. Efforts like the GA4GH (Global Alliance for 

Genomics and Health) and MLOps for health are already shaping these conversations, and future work 

should align with these emerging norms. 

 

5. Conclusion 
 

This paper explored how artificial intelligence is reshaping healthcare by diving into three key areas: 

forecasting public health trends, predicting genomic biomarkers, and analyzing medical images. We 

didn’t just look at them in isolation, we brought them together to see how AI can work across different 

layers of health data. Our experiments showed that modern machine learning methods like Random 

Forest, XGBoost, and LightGBM consistently outperformed older models like ARIMA and linear 

regression in forecasting. When it came to genomic data, stacked models gave us a clear edge. In medical 

imaging, adding attention modules and residual connections gave U-Net a noticeable boost, and using 

transfer learning with ResNet-34 got us impressively close to expert-level diagnostic accuracy. One of the 

main takeaways here is how powerful model combinations can be. For example, pairing CNNs with 

LSTMs led to nearly 50% fewer errors in forecasting disease incidence. Stacked models also 

outperformed standalone ones in predicting drug responses. It’s becoming more obvious that if we want 

to build systems that make a real difference in healthcare, they’ll need to pull from multiple sources, time 

series, genetic data, images, so they can see the bigger picture. 

 

That said, making models more accurate isn't the only thing that matters. If clinicians can’t understand or 

trust what the model is doing, it probably won’t make it past the pilot phase. That’s why we used tools 

like SHAP and attention visualizations, to give users a window into how the AI is making its calls. The 

modular setup we’ve built also means that this system can be adapted for different diseases or regions 

without starting from scratch. That kind of flexibility is critical, especially in places where access to 

tailor-made solutions is limited. Something else worth pointing out is that multimodal learning, bringing 

together different types of data, isn’t a bonus feature. It’s essential. Relying on one data type alone, 

whether it’s genomics or epidemiological trends, doesn’t capture the full complexity of how diseases 

behave or how patients respond. We saw clear performance gains when models could access and integrate 

varied sources. And as more health data becomes digitized, from wearables to lab results to imaging, the 
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ability to pull it all together is going to matter more and more.In conclusion, this paper offers both a 

technical framework and a real-world case for how AI can work across different types of healthcare data 

to support smarter interventions. Getting there will take teamwork across fields, clear rules about how this 

stuff gets used, and a strong focus on making sure the models actually work in practice. But what we’ve 

shown here is that this kind of integrated, meaningful AI isn’t speculative. It’s possible, and it’s already 

starting to happen. 
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