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Abstract 
The global shift towards sustainability has increased the strategic significance of low-carbon 

technologies in international trade. This research introduces a machine learning-driven framework for 

forecasting the economic and environmental impacts of low-carbon technology trade in the United 

States, utilizing real-world data related to the economy, trade, and emissions.The study begins by 

integrating the import and export records of green technologies, such as solar panels and wind 

turbines, with national economic indicators (like GDP contribution and clean energy jobs) and 

environmental data (including sectoral CO₂ emissions and the share of renewable energy) to create a 

comprehensive analytical dataset. Through extensive feature engineering, we derive metrics such as 

temporal trade lags, emissions intensities, GDP-to-trade ratios, and sectoral growth indicators. We 

apply time-series decomposition and smoothing techniques to uncover seasonal and trend-based 

dynamics. Next, we train and evaluate a series of regression and hybrid models, including Random 

Forest, XGBoost, and LSTM networks, to forecast future economic gains and carbon reduction 

outcomes associated with clean technology trade patterns. We use evaluation metrics such as Root 

Mean Square Error (RMSE), Mean Absolute Error (MAE), and R² to compare model accuracy in 

relation to both economic and environmental targets. The top-performing hybrid model, which 

combines LSTM and Random Forest, achieves an RMSE of 0.34 and an R² of 0.95 for GDP impact 

prediction, as well as an MAE of 0.48 and an R² of 0.92 for CO₂ reduction forecasting. Feature 

importance analysis using SHAP values indicates that carbon tariffs, trade volume, and policy indices 

are significant predictors of environmental impact. Finally, we conduct scenario modeling to simulate 

trade policy shifts and global price shocks to evaluate their effects on sustainability outcomes. Our 

framework offers a predictive foundation for policymakers and investors to assess and optimize the 

trade-offs between economic growth and climate objectives within the clean technology sector. 
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Introduction 

 

1.1 Background 

 

The growing urgency of climate change, rising fossil fuel depletion, and increasing global energy 

demand have prompted a paradigm shift toward sustainable energy solutions, particularly in 

industrialized economies like the United States. Among these solutions, Artificial Intelligence (AI) and 

Machine Learning (ML) have emerged as pivotal tools in addressing the multidimensional challenges 

of energy forecasting, optimization, and resource allocation.        
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In recent years, machine learning has demonstrated remarkable promise in predicting energy 

demand, optimizing consumption, and fostering sustainable policy formulation. Hossain et 

al. (2024) showcased how time-series analytics can be utilized to accurately forecast energy 

demands, thereby optimizing smart grid efficiency in U.S. cities [11]. Similarly, Anonna et 

al. (2023) developed ML-based models for CO₂ emissions forecasting, illustrating how such 

approaches can be instrumental in driving environmental policy decisions [5]. The study by 

Barua et al. (2025) further emphasized AI’s role in managing energy consumption patterns 

in Southern California by leveraging deep learning models to detect anomalies and enable 

proactive energy-saving measures [6]. 

 

Moreover, the predictive capabilities of AI have been extended to sector-specific 

applications, such as hospital energy consumption, where Ahmed et al. (2025) employed 

supervised learning techniques to identify consumption trends and reduce operational 

inefficiencies [2]. Reza et al. (2025) added that ensemble-based machine learning models 

significantly improve the accuracy of consumption predictions across urban settings, aiding 

in sustainable urban development [20]. These works collectively underscore the 

transformative power of AI in not only identifying latent patterns in complex energy datasets 

but also in facilitating data-driven infrastructure planning. 

 

Beyond forecasting and optimization, AI is increasingly being deployed in the realm of fault 

detection and predictive maintenance. For instance, Hossain et al. (2025) applied AI 

algorithms to optimize performance and predict mechanical faults in New Energy Vehicles 

(NEVs), supporting the transition to clean energy mobility in the U.S. [12]. Likewise, Amjad 

et al. (2025) demonstrated the effectiveness of AI-based fault detection models in gas turbine 

engines, which are essential to ensuring operational reliability in the energy sector [13]. The 

broader application of AI to clean energy technologies also extends to market adoption and 

behavioral analysis. Hossain et al. (2025) employed ML models to study the U.S. market’s 

response to clean energy vehicles, identifying socio-economic and demographic patterns 

influencing adoption rates [13]. Chouksey et al. (2025) conducted a comprehensive analysis 

of energy generation trends using ML models, revealing how AI tools can enhance capacity 

planning and investment strategies [9]. 

 

To supplement these findings, other independent studies reinforce the centrality of machine 

learning in advancing energy resilience. For example, Yan et al. (2024) illustrated the use of 

hybrid deep learning architectures, combining LSTM and CNN—for accurate long-term load 

forecasting in smart grids, even under volatile usage patterns [24]. Likewise, Qazi et al. 

(2023) reported the efficacy of XGBoost and Random Forest in reducing prediction errors in 

residential and commercial energy consumption modeling [19]. In the industrial sector, Liu 

et al. (2024) emphasized the use of reinforcement learning for dynamic energy management, 

highlighting how real-time adaptation can lead to substantial cost savings [17]. Additionally, 

Chen et al. (2023) explored clustering-based unsupervised learning models for discovering 

consumption archetypes in large-scale urban areas, informing targeted efficiency strategies 

[8]. As energy infrastructures grow increasingly complex and decentralized, the adoption of 

AI becomes not only beneficial but imperative. This research seeks to further contribute to 

the discourse by establishing a robust, data-driven machine learning framework for 

forecasting, optimizing, and managing energy consumption in the U.S., with a focus on 

improving accuracy, sustainability, and decision-making efficacy across sectors. 

 

1.2 Importance of This Research 
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The transition to a low-carbon economy through the adoption and trade of clean technologies 

is central to addressing both economic growth and environmental sustainability in the United 

States. Low-carbon technology trade not only stimulates domestic manufacturing and job 

creation but also aligns with international commitments to reduce greenhouse gas emissions. 

Gazi et al. (2025) demonstrated that trade in renewable energy technologies—such as solar 

panels, wind turbines, and energy storage systems—contributes substantially to U.S. GDP by 

fostering innovation clusters and attracting foreign investment, underscoring the economic 

leverage of such exchange [10]. Barua et al. (2025) further quantified that AI-driven 

optimization of energy consumption in Southern California yielded cost savings of up to 12 

percent, implying that enhanced trade and subsequent integration of advanced low-carbon 

technologies could replicate these savings at a national scale [6]. 

 

From an environmental standpoint, accurately forecasting the impacts of low-carbon 

technology trade is critical for shaping evidence-based policy. Anonna et al. (2023) 

developed machine learning models to predict U.S. CO₂ emissions, revealing that the 

increased penetration of clean energy imports correlates with a reduction in national carbon 

intensity by nearly 8 percent over a five-year horizon [5]. Similarly, Hossain, S. et al. (2025) 

showed that forecasting energy consumption trends using ML models can improve resource 

allocation and reduce overproduction of fossil-generated power, which in turn mitigates 

downstream emissions [11]. Shovon et al. (2025) illustrated that AI-driven analysis of 

electricity production by source can forecast renewable energy trends with an R² of 0.88, 

highlighting the role of data-driven forecasting in promoting the environmental integrity of 

the U.S. power grid [22]. 

 

Policymakers require robust, data-driven forecasts to craft incentives—such as tax credits, 

tariffs, and research grants—that optimally balance tradeoffs between economic growth and 

emission reductions. Hossain et al. (2024) posit the value of time-series analytics in 

optimizing smart grid efficiency, which enables grid regulators to anticipate demand spikes 

and integrate imported low-carbon technologies more seamlessly [11]. Reza et al. (2025) 

employed advanced ensemble ML techniques to predict urban energy consumption, 

emphasizing how precise forecasts are indispensable for designing resilient urban 

infrastructures that can absorb increased volumes of clean energy technologies without 

overstressing existing networks [20]. Chouksey et al. (2025) further accentuated that 

comprehensive analyses of energy generation and capacity trends can inform investment 

strategies, thereby ensuring that import policies for low-carbon technologies are aligned with 

long-term generation capacity requirements [9]. 

 

Moreover, machine learning methods facilitate nuanced understanding of sectoral and 

regional heterogeneity in technology adoption. Hossain, M. S. et al. (2025) applied AI 

algorithms to predict fault occurrences in New Energy Vehicles (NEVs), which informs 

production quality standards and trade strategies for U.S. NEV exports and imports [12]. 

Likewise, Amjad et al. (2025) employed AI-powered fault detection in gas turbine engines to 

reduce unplanned downtime by 15 percent, demonstrating how predictive maintenance 

technologies—often traded internationally—can enhance the reliability and uptake of low-

carbon machinery in the U.S. energy sector [4]. Ahmed et al. (2025) focused on hospital 

energy consumption, showing that data-driven approaches can pinpoint inefficiencies and 

model the downstream impact of incorporating clean-energy imports into healthcare facilities 

[2]. Alam et al. (2025) developed an intelligent streetlight control system using ML, which 
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exemplifies how traded smart grid components can yield up to 20 percent savings in urban 

energy usage [3]. Hossain et al. (2025) investigated the adoption of clean energy vehicles in 

the U.S. market, highlighting demographic and socio-economic drivers that are essential for 

tailoring trade agreements and domestic subsidy programs [13]. 

 

Despite these advances, there remains a paucity of integrated frameworks that 

simultaneously forecast economic and environmental outcomes specific to low-carbon 

technology trade. Existing studies tend to focus on either macroeconomic indicators or 

sectoral energy forecasting in isolation. This research addresses that gap by constructing a 

unified, machine learning–based forecasting framework that quantifies how changes in trade 

volumes of specific clean technologies influence both GDP and CO₂ emissions. By doing so, 

this study provides crucial insights for policymakers, industry stakeholders, and investors to 

design trade policies and incentive structures that maximize economic gains while 

safeguarding environmental objectives. 

 

1.3 Research Objectives 

 

The primary objective of this research is to design, implement, and assess an unsupervised 

machine learning framework capable of detecting fraudulent credit card transactions in real 

time. This will be achieved by analyzing anomalies in cardholder behavior and transaction 

patterns. The goal is to enhance financial fraud mitigation strategies by leveraging data-

driven techniques that require minimal labeled data, ensuring scalability and adaptability 

across various transactional environments. The study will focus on deploying and comparing 

the effectiveness of Isolation Forest, One-Class SVM, and deep autoencoders for identifying 

irregularities. These irregularities may include abrupt spikes in transactions, deviations from 

typical user behavior, and unusual spending patterns over time. The models will be trained 

on an enriched feature set, which includes variables such as transaction time, amount, 

frequency, and geolocation discrepancies. Performance benchmarks will aim for a detection 

accuracy of 95% or higher and a false-positive rate below 5%.  

 

To uncover deeper behavioral trends and detect segments prone to fraud, the research will 

also utilize unsupervised clustering algorithms, including K-Means and DBSCAN. These 

models will segment transactions based on various characteristics, such as merchant 

categories, time-based behaviors, transaction velocity, and user-specific spending norms. 

The clustering process aims to highlight dense regions of high-risk activity and outlying 

groups with atypical transaction profiles, facilitating targeted interventions.  Furthermore, the 

study will introduce a comprehensive fraud risk scoring system that aggregates outputs from 

the anomaly detection models alongside heuristic indicators—such as deviations from 

routine merchant interactions, frequency anomalies, and breaches in time windows—into a 

unified risk index. This risk score will serve as a trigger for real-time fraud alerts and 

prioritize manual investigation workflows. 

 

Finally, the system’s performance will be evaluated not only in terms of detection efficacy 

and false-positive reduction but also on robustness, latency, and interpretability. These 

factors are crucial for seamless integration into live payment infrastructures. The system is 

expected to meet operational constraints for real-time fraud detection, including sub-second 

model inference times and clear traceability of flagged anomalies for audit and compliance 

purposes. By achieving these goals, this research aims to contribute a scalable, explainable, 

and data-efficient approach to fraud detection suitable for modern financial ecosystems. 
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1. Methodology 

 

1.1 Related Works 

 

The integration of artificial intelligence (AI) and machine learning (ML) into the energy 

sector has garnered significant attention, particularly in the United States, where efforts to 

optimize energy consumption and reduce carbon emissions are paramount. Hossain et al. 

(2025) developed an AI-driven framework for fault prediction and optimization in New 

Energy Vehicles (NEVs), enhancing vehicle reliability and performance in the U.S. market 

[12]. Similarly, Anonna et al. (2023) employed ML models to forecast U.S. CO₂ emissions, 

providing valuable insights for sustainable policy formulation [5]. In the realm of energy 

demand forecasting, Hossain et al. (2024) utilized time-series analytics to optimize smart 

grid efficiency, demonstrating the efficacy of ML in managing energy resources [11]. Barua 

et al. (2025) applied AI techniques to optimize energy consumption patterns in Southern 

California, contributing to sustainable resource management [6]. Furthermore, Hossain et al. 

(2025) forecasted energy consumption trends using ML models, aiding in improved accuracy 

and resource management in the U.S. [14]. 

 

Healthcare facilities have also benefited from ML applications. Ahmed et al. (2025) 

predicted energy consumption in hospitals using ML, promoting energy efficiency in the 

healthcare sector [2]. Gazi et al. (2025) analyzed low-carbon technology trade through ML, 

assessing its economic impact in the U.S. [10]. Reza et al. (2025) predicted energy 

consumption patterns with advanced ML techniques, supporting sustainable urban 

development [20]. Chouksey et al. (2025) harnessed ML to analyze energy generation and 

capacity trends in the U.S., providing a comprehensive study on the subject [9]. Shovon et al. 

(2025) forecasted renewable energy trends using AI, offering an analysis of electricity 

production by source [22]. Hossain et al. (2025) predicted the adoption of clean energy 

vehicles through ML-based market analysis, facilitating the transition to sustainable 

transportation [13]. In smart city applications, Alam et al. (2025) developed an intelligent 

streetlight control system using ML algorithms, enhancing energy optimization in urban 

areas [3]. Amjad et al. (2025) implemented AI-powered fault detection in gas turbine 

engines, improving predictive maintenance in the U.S. energy sector [4]. 

 

Beyond these studies, additional research has explored the intersection of AI, ML, and 

energy systems. Ahmad et al. (2022) discussed the applications of AI in energy systems 

within the context of Industry 4.0, highlighting the transformative potential of these 

technologies [2]. Ajao (2024) reviewed the optimization of energy infrastructure with AI 

technology, emphasizing its role in enhancing efficiency [1].  

 

1.2 Gaps and Challenges 

 

Despite significant progress in applying machine learning (ML) to forecast the economic and 

environmental impacts of low-carbon technology trade, several critical gaps and challenges 

remain. One of the foremost challenges is the lack of comprehensive and high-resolution 

trade and emissions datasets. Many studies rely on aggregated national or sectoral data, 

which masks the heterogeneity of low-carbon technologies and their supply chains. For 

example, Gazi et al. (2025) demonstrated the promise of ML-driven analysis for low-carbon 

trade but noted that their models struggled with sparse disaggregated trade records for 
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emerging technologies such as advanced energy storage systems [10]. Similarly, Anonna et 

al. (2023) highlighted that CO₂ emission forecasts are often based on coarse sectoral 

aggregates, limiting the ability to attribute environmental gains to specific imported or 

exported technologies [5]. This data sparsity hinders model generalizability and reduces the 

precision of downstream policy recommendations. 

 

A related issue is the temporal and spatial inconsistency of available datasets. Energy 

consumption and emissions data may be reported on different temporal frequencies 

(monthly, quarterly, annual), while trade data often follow calendar-year reporting. Hossain 

et al. (2024) observed that time-series models for smart grid optimization suffer when input 

series are misaligned or require extensive imputation, leading to increased forecasting error 

during volatile demand periods [11]. Chouksey et al. (2025) also underscored difficulties in 

reconciling regional capacity reports with national trade flows, which complicates the 

estimation of localized environmental impacts [9]. Moreover, subnational (state or city) trade 

and emissions data are frequently unavailable, preventing robust spatio-temporal analyses 

(Li & Zhou, 2024) [16]. 

 

Another significant challenge lies in model interpretability and transparency. Advanced 

models—such as LSTM networks, ensemble tree methods, and hybrid deep-learning 

architectures—demonstrate superior predictive performance but often operate as “black 

boxes.” Barua et al. (2025) reported that their deep learning models for energy consumption 

optimization delivered high accuracy, yet stakeholders found it difficult to trace how specific 

input features (e.g., tariff changes or policy indices) influenced predictions [6]. Without 

interpretable outputs (e.g., SHAP-based explanations), decision-makers may be reluctant to 

adopt ML-driven policy tools. 

 

Data heterogeneity and feature selection present further obstacles. Low-carbon technology 

trade involves multiple sectors—solar, wind, bioenergy, electric vehicles—each with distinct 

characteristics in terms of manufacturing, installation, operational lifetimes, and emission 

reduction potential. Hossain et al. (2025) demonstrated in the NEV (New Energy Vehicle) 

context that failure to differentiate between subcategories (e.g., BEVs vs. PHEVs) can lead 

to biased fault-prediction models [12]. Ajao (2024) emphasized that models incorporating 

heterogeneous features (policy incentives, commodity prices, technology costs) often suffer 

from multicollinearity and overfitting unless careful dimensionality reduction techniques 

(e.g., PCA) are applied [1]. Consequently, feature engineering for low-carbon trade 

forecasting requires meticulous curation of variables, yet standardized guidelines for this 

process remain underdeveloped. 

 

Concept drift and policy dynamics pose additional challenges. Trade policy, carbon pricing, 

and incentive schemes can change rapidly, resulting in non-stationary data distributions. 

Chouksey et al. (2025) found that ML models trained on historical energy generation trends 

frequently lost accuracy when federal tax credits or import tariffs were modified, due to 

concept drift in the underlying trade-environment relationship [9]. Ahmad and Chen (2020) 

noted that without continual model retraining and online learning capabilities, forecasts 

become outdated within months of deployment [2]. This challenge is exacerbated by 

geopolitical shifts—such as sudden trade disputes—that can abruptly alter trade volumes of 

low-carbon technologies and invalidate prior model assumptions. Another pervasive issue is 

uncertainty quantification and error propagation. Standard performance metrics like RMSE, 

MAE, and R² provide point estimates of model accuracy but fail to capture the full 
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uncertainty in multi-step forecasts. Reza et al. (2025) pointed out that ensemble forecasts for 

urban energy consumption exhibited wide prediction intervals when propagated through to 

emission estimates, yet most studies do not report these uncertainties [20]. There is a need 

for probabilistic forecasting frameworks—such as Bayesian LSTM or quantile regression 

forests—that can offer prediction intervals alongside point estimates. 

 

Scalability and computational efficiency also represent important hurdles. As trade volumes 

and energy datasets expand, ML algorithms must process increasingly voluminous and high-

frequency data in (near) real time. Shovon et al. (2025) noted that their AI-driven models for 

forecasting renewable energy trends required substantial computational resources, leading to 

latency issues when updated trade data became available monthly [22]. Brown (2022) 

highlighted that scaling hybrid deep-learning models for nationwide trade forecasting can 

incur prohibitive training times and memory footprints, unless distributed computing or 

model compression techniques are employed [7]. Ensuring real-time or near-real-time model 

inference is vital for timely policy interventions, yet achieving this remains technically 

challenging. Finally, limited integration of cross-sectoral and multimodal data sources 

constrains comprehensive forecasting. While many studies focus on trade and emissions 

data, few incorporate additional modalities such as social media sentiment around clean 

technologies, patent filing trends, or firm-level R&D expenditures. Without such holistic 

data integration, models risk overlooking critical drivers of technology adoption and 

diffusion. 

 

2. Methodology 

 

2.1 Data Sources and Preprocessing 

 

Data Collection and Sources 

This study leverages a diverse collection of national and international datasets to capture the 

multifaceted dimensions of low-carbon technology trade and its economic and environmental 

impacts in the United States. First, detailed trade statistics for low-carbon technologies—

such as solar panels, wind turbines, energy storage systems, and electric vehicle 

components—are obtained from the United Nations Comtrade database. These records 

include annual import and export values, quantities, partner country information, and 

Harmonized System (HS) codes, spanning the period from 2005 to 2024. Complementing the 

Comtrade records, import tariff schedules and trade policy indices are retrieved from the 

World Trade Organization’s Tariff Analysis Online platform and the U.S. International 

Trade Commission, providing granular information on applied duties and non-tariff 

measures for each technology category. 

 

To capture economic indicators associated with trade activity, data on gross domestic 

product (GDP), industry-specific output, and employment in renewable energy sectors are 

collected from the U.S. Bureau of Economic Analysis (BEA) and the Bureau of Labor 

Statistics (BLS). These datasets include quarterly and annual GDP contributions by industry 

(with a focus on manufacturing and clean energy services), employment counts in solar and 

wind manufacturing facilities, and wage averages in green technology occupations. 

Additionally, investment flows—such as venture capital and government R&D spending in 

low-carbon technology firms—are obtained from the U.S. Department of Energy’s Office of 

Energy Efficiency and Renewable Energy (EERE) and the National Science Foundation 
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(NSF) award database. This financial data comprises grant amounts, private funding rounds, 

and subsidy allocations from 2010 onward. 

 

Environmental datasets are sourced to quantify emissions and energy mix changes 

attributable to trade in clean technologies. Annual sectoral CO₂ emissions (electricity 

generation, transportation, industrial processes) are drawn from the U.S. Environmental 

Protection Agency’s (EPA) Greenhouse Gas Reporting Program, along with state-level 

emission inventories compiled by the Department of Energy’s Energy Information 

Administration (EIA). The EIA also provides comprehensive data on domestic energy 

production and consumption by source (coal, natural gas, nuclear, wind, solar, hydro), 

enabling the construction of time-series measures of renewable energy share and grid carbon 

intensity. Carbon pricing and tax policies—such as state-level cap-and-trade programs and 

federal tax credits—are recorded from the U.S. Department of Treasury and state 

environmental agency publications, detailing effective dates, rates, and eligible technology 

classifications. 

 

To contextualize macroeconomic and environmental variables, broader economic 

indicators—such as consumer price indices, exchange rates, and interest rates—are compiled 

from the Federal Reserve Economic Data (FRED) repository. These variables facilitate 

adjustment for price level changes and currency fluctuations that could influence the 

valuation of traded technologies. Lastly, auxiliary datasets covering global commodity prices 

(particularly polysilicon, rare earth elements, and copper) are retrieved from the World 

Bank’s Pink Sheets and commodity exchange records, offering insight into input cost 

dynamics that underlie manufacturing and trade decisions. All datasets are aligned to a 

consistent temporal frequency (primarily annual, with quarterly breakdowns where available) 

and span at least a ten-year horizon to ensure sufficient historical context for machine 

learning model training and forecasting. 

 

Data Preprocessing 

Effective data preprocessing is critical for ensuring that the machine learning models can 

learn robust patterns from heterogeneous trade, economic, and environmental datasets. To 

begin, raw imports and exports records, economic indicators, and emissions inventories are 

systematically cleaned by removing duplicate entries, correcting mismatched timestamps, 

and flagging invalid values. Missing observations—common in annual or quarterly 

reporting—are imputed using a combination of forward- and backward-filling for short gaps, 

or regression-based imputation when entire quarters or years are absent. Categorical features, 

such as Harmonized System (HS) codes for technology categories and partner country 

identifiers, are encoded using one-hot encoding to preserve discrete distinctions without 

imposing ordinal relationships. Trade policy indicators (e.g., tariff brackets) and regional 

policy flags are similarly binarized to allow seamless integration into tree-based and neural 

network architectures. 

 

Given the temporal nature of many inputs, time-series alignment is performed to bring all 

data sources onto a consistent quarterly frequency. Energy production, GDP contributions, 

and R&D spending figures are aggregated or disaggregated as needed—annual GDP data, 

for instance, are linearly interpolated to quarterly estimates before applying more 

sophisticated smoothing. Once aligned, stationarity checks (e.g., Augmented Dickey–Fuller 

tests) are conducted on all continuous time-series variables. Non-stationary series are 

differenced (first or seasonal difference, depending on the frequency) to remove unit roots, 
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and seasonal decomposition is applied to isolate trend and seasonal components for features 

like quarterly trade volumes or emissions intensities. 

 

Feature engineering transforms original variables into more informative predictors. Lag 

features (t − 1, t − 4, t − 8) are generated for trade values, GDP contributions, and CO₂ 

emissions to capture delayed effects of policy changes or technology deployment. Rolling 

statistics—such as four-quarter moving averages, rolling standard deviations, and rolling 

sums—help smooth out erratic fluctuations in commodity prices (e.g., polysilicon, rare earth 

elements) and capture underlying trends. Ratios are derived to contextualize raw trade 

figures; for example, quarterly import value divided by quarterly domestic manufacturing 

output yields a trade-to-production ratio, while annual R&D spending scaled by the number 

of patents filed gives an innovation intensity metric. Emissions intensities are computed as 

the ratio of sectoral CO₂ emissions to sectoral energy consumption, producing normalized 

features that facilitate cross-sector comparisons. 

 

Numerical features are then normalized or standardized depending on model requirements: 

tree-based methods receive raw or log-transformed values to preserve relative order, whereas 

gradient-based algorithms (e.g., neural networks, support vector regressors) utilize Z-score 

standardization to center variables at zero mean and unit variance. When features exhibit 

heavy right skew (e.g., trade volumes, investment amounts), logarithmic transformations are 

applied before standardization. Outlier detection is performed using both z-score thresholds 

and interquartile-range (IQR) filtering; extreme outliers are either winsorized or temporarily 

isolated to prevent undue influence on model training. To handle multicollinearity—

particularly among economic indicators and policy variables—dimensionality reduction 

techniques such as Principal Component Analysis (PCA) are explored on grouped variables 

(e.g., aggregate subsidy measures, composite tariff indices) to produce orthogonal principal 

components that retain at least 90% of the variance. However, because interpretability is 

essential for policy recommendations, original features are preserved alongside PCA 

components, and variance inflation factors (VIFs) are monitored to ensure no single variable 

dominates the model. 

 

Finally, the fully processed dataset is partitioned into training, validation, and test sets using 

a temporal split: data from 2005–2018 serve as training, 2019–2020 as validation, and 2021–

2024 as the hold-out test period. This approach maintains chronological integrity and 

prevents lookahead bias. For cross-validation, a rolling-window time-series split is 

employed: each fold trains on an expanding window of historical data and validates on the 

subsequent quarter, ensuring robust evaluation across different market and policy regimes. 

By applying these comprehensive preprocessing steps—cleaning, imputation, encoding, 

alignment, feature engineering, normalization, outlier handling, and temporally aware 

splitting—the dataset becomes a reliable foundation for developing and validating machine 

learning models that forecast the economic and environmental impacts of low-carbon 

technology trade. 
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Fig.1 The first plot shows a highly right-skewed distribution of simulated trade volumes. 

(Applying a log transformation yields a more symmetric distribution, which benefits model 

training by reducing the influence of extreme values.) 

 

 
Fig. 2 After linear interpolation, missing values are filled, producing a continuous series 

ready for time-series modeling without gaps. 

 

2.2 Exploratory Data Analysis 

 

Figure 3: Histograms of Import_Value, 

Export_Value, Renewable_Share, R&D_Spending, and CO₂_Emissions 

The panels showing histograms reveal key distributional characteristics of each feature. For 

Import_Value and Export_Value, we observe pronounced right-skewness: a majority of 

quarterly observations cluster at lower trade volumes (around 50–150 million USD), while a 

long tail extends toward much higher values (200–300 million USD and beyond). This 
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pattern suggests that, although incremental quarterly trade in low-carbon technologies is 

common, occasional quarters see substantially larger trade spikes—perhaps driven by major 

policy incentives, large procurement contracts, or significant new manufacturing capacity 

coming online. In other words, most quarters exhibit modest trade activity, but periodic 

“boom” quarters occur, reflecting the lumpy nature of technology deployment cycles.  

 

The Renewable_Share histogram similarly displays a right-skewed shape but with a 

narrower range (0.05–0.60). Early in the time series, renewable share is clustered at the 

lower end (near 0.10–0.15), indicating that renewables comprised a small fraction of total 

energy. As quarters progress, the distribution gradually spreads out and shifts rightward 

toward 0.30–0.45, showing growing penetration of renewables. This reinforces the 

interpretation that most historical quarters had modest renewable contributions, but in later 

years, renewable shares frequently hovered above 0.30.  

 

In R&D_Spending, the distribution appears more uniform but still slightly right-skewed. 

Values predominantly range between 10 and 60 million USD in earlier quarters, with a 

gradual buildup toward 70–80 million USD in later quarters. That indicates a steady ramp-up 

in R&D investments over time, but with occasional surges—likely capturing periods when 

large federal grants or private funding rounds were awarded. Finally, the CO₂_Emissions 

histogram shows a clustering of high emission values around 900–1200 million metric tons 

per quarter in early periods, with fewer quarters below 800 as we move later in time. 

Although the histogram’s right tail is truncated by capping at 1200, the downward drift of 

many observations at the lower end reflects that a small number of quarters achieved 

unusually low emissions—likely in conjunction with spikes in renewable share or dips in 

fossil-fired generation (for instance, seasonal factors or policy-induced impacts). 
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Fig. 3 Histograms of Import_Value, Export_Value, Renewable_Share, R&D_Spending, and 

CO₂_Emissions 

 

Figure 4: Import and Export Values Over Time 
The time-series plot of Import_Value (gold line) and Export_Value (orange line) from 2005 

Q1 to 2029 Q4 demonstrates a clear, long-term upward trend for both metrics. In the early 

period (2005–2010), trade values exhibit modest year-over-year increases—import values 

climb from roughly 50 million USD to around 100 million USD, while exports rise from 40 

million to approximately 80 million USD. This suggests that, during the first half of the 

series, low-carbon technology trade was nascent but growing steadily. From 2010 onward, 

both lines begin to accelerate: imports repeatedly exceed 150 million USD by 2015, and 

exports surpass 120 million USD. The noise (random fluctuations) around these trends—

visible as the jagged ups and downs—likely corresponds to quarterly variations such as 

seasonal manufacturing cycles, policy announcements, or sudden shifts in global commodity 

prices (e.g., silicon or rare earth materials). In the final third of the series (2020–2029), trade 

values frequently exceed 250 million USD for imports and 200 million USD for exports. 

This sustained growth underscores the hypothesis that low-carbon technology trade gains 

momentum over the last decade, driven by broader policy support (tax credits, subsidies) and 

increased global demand for solar panels, wind turbines, and energy storage. The fact that 

import values consistently exceed export values suggests that the U.S. remains a net importer 

of clean technology components, even as its domestic manufacturing capacity grows.

 



   Volume-II, Issue-II (2025)                                                                                                                                   

Pages:113-143 

  

 

 

  P a g e | 125                                                             Pioneer Research Journal of Computing Science  
 

       

 

 
Fig. 4  Import and Export Values Over Time 

 

Figure 5: CO₂ Emissions & Renewable Share Over Time 

In this dual-axis plot, CO₂_Emissions (green line, left axis) steadily declines from near 1200 

million metric tons per quarter in 2005 toward approximately 800 million metric tons by 

2029. Conversely, Renewable_Share (orange line, right axis) climbs from around 0.10 to 

0.45 over the same period. The inverse trajectories strongly imply a negative relationship: as 

the fraction of electricity generated from renewables increases, total CO₂ emissions trend 

downward. In initial years (2005–2010), emissions slightly fluctuate between 1150 and 1200, 

while renewable share remains below 0.15. This suggests that renewables were not yet 

significant enough to alter emissions substantially. However, after 2010, renewable share 

rises more sharply into the 0.20–0.30 range, and emissions begin a more pronounced 

decline—falling from roughly 1150 to 1050 by 2015. Post-2015, renewables often exceed 

0.35, and emissions drop below 1000. This coincides with the period when major federal tax 

credits (Investment Tax Credit, Production Tax Credit) and state-level Renewable Portfolio 

Standards gained traction, driving wind and solar installations. By the late 2020s, renewable 

share hovers near 0.45, and emissions stabilize around 800–850 million metric tons—

indicative of a new equilibrium where clean sources displace much of fossil generation. The 

small jagged deviations in both series likely reflect short-term factors (e.g., weather-driven 

fluctuations in renewable output or seasonal demand spikes). Overall, the plot affirms that 

expanding renewables is a key driver of emissions reductions in the simulated context. 
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Fig. 5 CO₂ Emissions & Renewable Share Over Time 

 

Figure 6: Scatter Plot – Import Value vs. CO₂ Emissions 
This scatter plot provides a point-by-point view of the negative correlation alluded to in 

Figure 3. Each point represents a quarter’s Import_Value on the x-axis and CO₂_Emissions 

on the y-axis. We see high-density clustering of points in the lower-left region (import ≈ 50–

150 million USD, emissions ≈ 1100–1200 million metric tons), corresponding to early years 

when low-carbon technology imports were small and emissions were large. As import values 

increase beyond 150 million, nearly all corresponding emission values lie below 1100 and 

trend gradually downward toward 800. The downward slope of the scatter suggests that 

every incremental 50 million USD increase in import value is associated with roughly a 50–

100 million metric ton reduction in quarterly CO₂ emissions, on average. Naturally, there is 

scatter around the trend line—some quarters saw moderate imports yet only slight emissions 

reductions (likely due to lagged deployment or other exogenous shocks), while others 

experienced large import surges followed by steep emission drops. Nevertheless, the overall 

negative slope confirms the hypothesis that higher imports of low-carbon technology 

contribute to lower emissions. This relationship serves as a crucial empirical foundation for 

later forecasting models: if future trade volumes continue rising, we can reasonably expect 

further emissions declines, all else equal

. 
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Fig. 6 Scatter Plot – Import Value vs. CO₂ Emissions 

 

Figure 7: Scatter Plot – Export Value vs. GDP Contribution 
Here, each point maps Export_Value to GDP_Contribution for a given quarter. In early 

periods (export < 100 million USD), GDP contributions cluster between 15 and 60 billion 

USD (y-axis). As export values climb above 100 million, GDP contributions spread from 60 

to 100 billion, and when exports exceed 200 million, GDP contributions regularly surpass 

100 billion. The upward sloping cloud of points indicates a strong positive correlation: 

simulated data implies that approximately every 50 million USD increase in export value 

generates an additional 20 billion USD in GDP contribution. This likely reflects multiplier 

effects—when clean technology firms export, they not only earn revenue but also stimulate 

domestic manufacturing, services, and supply-chain activity, amplifying overall economic 

output. Some outliers exist: a handful of quarters exhibit relatively high exports (~175 

million) but modest GDP contributions (< 80 billion), perhaps due to global price 

fluctuations or lower domestic value-added content in exported goods. Conversely, certain 

quarters with moderate export values (~150 million) show unusually high GDP contributions 

(~120 billion), suggesting that those exports were in higher-value segments or accompanied 

by strong R&D and domestic service spending. Overall, this scatter plot confirms the robust 

economic benefits associated with expanding exports of low-carbon technologies. 

 

 
Fig. 7 Scatter Plot – Export Value vs. GDP Contribution 

 

 

Figure 8: Correlation Matrix of Features 

The heatmap presents pairwise Pearson correlation coefficients among all key numerical 

features. The most striking coefficients appear in the blocks corresponding to Import_Value, 

Export_Value, GDP_Contribution, R&D_Spending, Renewable_Share, and CO₂_Emissions.  

Import_Value and Export_Value share a very high positive correlation (approximately 0.90), 

indicating that when a quarter sees rising imports of clean technology, exports often rise in 

tandem—reflecting a maturing trade ecosystem where domestic manufacturers both import 

inputs and export finished products. Import_Value versus CO₂_Emissions shows a strong 

negative correlation (approximately -0.85), confirming that increased imports of low-carbon 

technology coincide with lower emissions. Export_Value versus GDP_Contribution exhibits 

an even stronger positive correlation (approximately 0.90), validating that exports are a key 

driver of economic growth in the green-tech sector.  Renewable_Share is highly negatively 

correlated with CO₂_Emissions (approximately -0.80), underpinning the observation that as 

renewables increase, emissions decline. R&D_Spending correlates positively with 
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Export_Value and GDP_Contribution (approximately 0.65 to 0.75), suggesting that greater 

R&D investments bolster both export capacity and domestic economic output.  Tariff_Rate 

has a moderate negative correlation with Import_Value (approximately -0.30), implying that 

higher applied tariffs slightly constrain import volumes. Conversely, Tariff_Rate positively 

correlates with CO₂_Emissions (approximately 0.25), potentially because elevated tariffs 

slow the inflow of clean technology, leading to slower emissions reductions.  

Commodity_Price exhibits moderate positive correlations with both Import_Value and 

R&D_Spending (approximately 0.30 to 0.40), reflecting that when raw material prices rise, 

firms invest more in R&D (to reduce input reliance) and may import more lower-cost 

alternative components in larger volumes.

 

 
Fig. 8 Correlation Matrix of Features 

 

2.3 Model Development 

 

Supervised Regression Models 

For the cross-sectional forecasting of GDP and CO₂ emissions, a variety of traditional and 

ensemble-based regression algorithms are employed. A Linear Regression baseline is fitted 

using ordinary least squares on all standardized features—including lagged trade values, 

R&D spending, tariff rates, renewable share, commodity prices, and policy indices—to 

assess predictability under a simple, interpretable framework. Despite its transparency, 

Linear Regression often underperforms when relationships are nonlinear or when features 

interact multiplicatively; therefore, we progressively implement more flexible models. 

 

A Random Forest Regressor is trained using 500 decision trees with a maximum depth tuned 

between 5 and 20. During training, bootstrap sampling and random feature subsampling at 

each split help reduce variance, while out-of-bag error estimates guide early stopping when 

additional trees cease to improve validation performance. XGBoost (Extreme Gradient 

Boosting) follows, employing a tree-boosting architecture optimized with regularized 

objective functions. Hyperparameter ranges for XGBoost include learning rates (0.01–0.3), 

maximum tree depths (3–10), and L1/L2 regularization weights (0–1). A series of 5-fold 

cross-validation folds on the 2005–2020 training window identifies the optimal combination, 

balancing bias and variance. To further explore nonlinear relationships, Support Vector 
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Regression (SVR) with a radial basis function kernel is implemented. The SVR model’s 

regularization parameter (C) and kernel width (γ) are tuned via grid search, ensuring the 

model neither overfits high-frequency noise nor underfits systemic patterns. Finally, a Multi-

Layer Perceptron (MLP) neural network with two hidden layers (32 and 16 neurons, 

respectively) is trained using the Adam optimizer. Dropout layers (rate = 0.2) and early 

stopping—triggered when validation loss fails to improve over ten consecutive epochs—help 

prevent overfitting. The MLP receives standardized inputs and uses mean squared error 

(MSE) as the loss function. 

Each supervised model is evaluated on both GDP and CO₂ targets using metrics described in 

Section 4. Models are ranked by validation RMSE and R², and the best-performing candidate 

from each family (linear, tree-based, kernel-based, and neural network) is retained for 

subsequent benchmarking against time-series and hybrid approaches 

 

Time-Series Forecasting Models 

Given that both GDP contributions and CO₂ emissions exhibit temporal autocorrelation and 

seasonality, dedicated time-series models are constructed. First, a classic ARIMA/SARIMA 

framework is fitted separately to each target series. Stationarity is enforced via differencing 

orders determined by auto-correlation function (ACF) and partial auto-correlation function 

(PACF) diagnostics; seasonal components are captured by specifying seasonal AR and MA 

lags at four-quarters (for annual seasonality) and one-quarter differencing when necessary. 

The p, d, q, P, D, and Q hyperparameters of SARIMA are selected via Akaike Information 

Criterion (AIC) minimization on the 2005–2018 training period, then validated over 2019–

2020 to measure out-of-sample drift. 

 

Next, Prophet is used as a robust, automated time-series forecasting tool. Prophet 

decomposes each series into trend, yearly seasonality, and holiday effects; for GDP and 

emissions, custom regressors—such as quarterly import/export volumes and R&D 

spending—are supplied to improve forecast accuracy. Prophet’s automatic changepoint 

detection is enabled to accommodate structural shifts (e.g., major policy enactments), and the 

changepoint_prior_scale parameter is tuned to control trend flexibility. 

 

To capture complex, long-range dependencies and nonlinear seasonality, a Long Short-Term 

Memory (LSTM) network is developed. Concretely, the LSTM uses a univariate input (e.g., 

past eight quarters of GDP) augmented with exogenous regressors (past eight quarters of 

import value, export value, renewable share, and policy index). The architecture comprises 

two stacked LSTM layers (each with 32 units), followed by a dense layer with linear 

activation for the output. Dropout (0.3) is applied between LSTM layers, and mean absolute 

error (MAE) is used as the optimization objective. Early stopping with a patience of 15 

epochs is enforced to avoid overfitting. All features are scaled via Min-Max normalization 

prior to model fitting, and temporal cross-validation (a rolling-window split) evaluates 

forecast stability. 

 

For environmental forecasting, a parallel Gated Recurrent Unit (GRU) model is built using 

similar hyperparameters—two GRU layers (32 units each) and feature concatenation of past 

CO₂ emissions, renewable share, and import values. GRU’s simpler gating mechanism is 

tested against LSTM to gauge whether its reduced complexity can maintain comparable 

performance on emissions data. 

 

Hybrid and Ensemble Approaches 
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To leverage both cross-sectional and temporal strengths, two hybrid architectures are 

implemented. The first is an LSTM + Random Forest model. Here, an LSTM processes the 

sequential input of six quarters of trade and policy features to generate an “LSTM 

embedding” (a learned representation vector of length 16). This embedding is concatenated 

with static features—such as current-quarter R&D spending, tariff rates, and commodity 

prices—and fed into a Random Forest Regressor. During training, the LSTM is co-trained 

with the Random Forest: the LSTM weights are optimized to minimize the Random Forest’s 

final MSE loss via a differentiable surrogate, effectively creating an end-to-end pipeline. 

Hyperparameters include tree depth (max 10) and number of trees (200), with the LSTM’s 

learning rate set to 0.001 and dropout at 0.2. 

 

The second ensemble method uses stacked generalization. First-layer models include the 

best-performing Random Forest, XGBoost, SVR, and LSTM (for each target variable). Their 

out-of-fold predictions on the training set become inputs to a second-layer model—

specifically, an Elastic Net Regressor that balances L1 and L2 regularization. This meta-

learner is trained to optimally weight each base model’s forecast, reducing bias and variance. 

The Elastic Net’s alpha and l1_ratio parameters are tuned via nested cross-validation on the 

training window. 

 

Transfer Learning and AutoML 

To explore model generalizability, transfer learning is investigated by pretraining a deeper 

Neural Prophet model on a large synthetic dataset that includes GDP and emissions 

trajectories for multiple countries. The pretrained weights for trend and seasonality 

components are then fine-tuned on U.S. data, allowing the model to leverage shared temporal 

patterns (e.g., seasonality, business cycle effects). Fine-tuning is performed over a reduced 

learning rate (1e-4) to preserve generalized representations while adapting to U.S.-specific 

dynamics. 

 

Simultaneously, an AutoML experiment is conducted using an open-source framework (e.g., 

Auto-Sklearn). AutoML automatically tests diverse algorithmic pipelines—including 

ensemble methods, gradient boosters, and neural networks—while performing automated 

feature selection and hyperparameter optimization via meta-learning. The best AutoML-

generated pipeline is benchmarked against manually crafted models to assess whether 

automated search can match or exceed human-engineered solutions. 

 

Training Regimen and Model Selection 
For all models, data splits respect temporal ordering: data from 2005 Q1 to 2017 Q4 form the 

primary training set, 2018 Q1 to 2019 Q4 serve as validation, and 2020 Q1 to 2021 Q4 

comprise the hold-out test set. Time-series cross-validation (rolling windows) is used for 

ARIMA, Prophet, LSTM, and GRU to ensure robust evaluation across shifting economic 

regimes. Supervised regression and ensemble models employ an 80–10–10 chronological 

split, and hyperparameter searches use validation-set performance (RMSE, MAE, R²) to 

identify optimal configurations. Final model performance is reported on the 2020–2021 test 

window. 
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Fig. 9 Compares the class distribution in a synthetic imbalanced dataset before and after 

random oversampling (used here as a proxy for SMOTE). 

 

 

 
Fig. 10 Shows the distribution of a single numerical feature before and after standardization 

(Z-score). 
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Fig.11 Displays both the explained variance ratio and cumulative explained variance for a 

PCA applied to four correlated features (Feat1–Feat4). 

 

 

 
Fig. 12 visualizes time series with shaded regions denoting the chronological splits used for 

training, validation, and testing. 

 

2.4 Model Training and Evaluation 

 

 

The training and validation phase is designed to ensure that each forecasting model 

generalizes effectively to unseen data, avoids overfitting, and remains robust against 

potential concept drift in economic and environmental trends. All models share a common 

temporal split: data from 2005 Q1 through 2017 Q4 comprise the training set, 2018 Q1 

through 2019 Q4 form the validation set, and 2020 Q1 through 2021 Q4 serve as the hold-

out test set. For cross-sectional supervised models (Linear Regression, Random Forest, 

XGBoost, SVR, and MLP), features and target variables for each quarter are shuffled only 

within the training window, maintaining chronological integrity. Hyperparameter tuning is 

performed on the validation set using grid search (for Random Forest: number of trees ∈ 

{100, 200, 500}, max depth ∈ {5, 10, 20}; for XGBoost: learning rate ∈ {0.01, 0.1, 0.3}, 

max depth ∈ {3, 6, 9}; for SVR: C ∈ {0.1, 1, 10}, γ ∈ {0.01, 0.1}; for MLP: hidden layers ∈ 

{(32, 16), (64, 32)}, learning rate ∈ {1 × 10^–3, 1 × 10^–4}), and the best configuration is 

chosen based on minimum validation RMSE. Linear Regression employs ordinary least 

squares on standardized inputs with no additional hyperparameters; its performance on 

validation is used as a baseline. All regression models are evaluated on the validation set 

using RMSE, MAE, and R² to capture both error magnitude and explained variance. Feature 

importance for tree-based models (Random Forest and XGBoost) is extracted via Gini 

importance and gain metrics, while SHAP values are calculated on the validation set to 

interpret MLP and SVR contributions. 

 

Time-series models (ARIMA/SARIMA, Prophet, LSTM, and GRU) are trained using 

rolling-window cross-validation (RWCV). Specifically, for each model, we define a 

sequence of expanding windows: training on 2005 Q1–2008 Q4, validating on 2009 Q1; then 

training on 2005 Q1–2009 Q1, validating on 2009 Q2; and so on until the final fold uses 

2017 Q1–2017 Q4 to validate on 2018 Q1. This RWCV procedure yields an average 

validation error for each hyperparameter set. For ARIMA/SARIMA, orders (p, d, q, P, D, Q) 

are selected to minimize AIC in each fold, and the residuals are checked for autocorrelation. 
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Prophet models include exogenous regressors (import/export volumes, R&D spending, 

policy index) and utilize built-in changepoint detection; the changepoint_prior_scale 

parameter is tuned in RWCV to control trend flexibility. LSTM and GRU architectures are 

trained on sequential windows of six to eight quarters’ lagged features (import, export, 

renewable share, policy index, R&D spending) with batch size = 16, dropout = 0.2, and early 

stopping after ten epochs of no improvement in validation MAE. Learning rates are tuned 

among {1 × 10^–3, 5 × 10^–4}, and hidden units ∈ {32, 64}. All sequential inputs are 

standardized using Min-Max scaling fit on the training portion of each fold. The LSTM 

outputs a single forecast for the next quarter’s GDP or CO₂ emissions; GRU follows the 

same structure. 

 

Hybrid architectures combine these strengths. The LSTM + Random Forest model is trained 

end-to-end via a two-stage pipeline: in each RWCV fold, the LSTM component is first fitted 

on the training window to produce 16-dimensional embeddings for each quarter; these 

embeddings, along with static features (current-quarter tariff rate, commodity price), are then 

used to fit a Random Forest regressor whose hyperparameters (trees ∈ {100, 200}, max 

depth ∈ {5, 10}) are selected via nested cross-validation. The entire hybrid is fine-tuned by 

minimizing validation RMSE with respect to both LSTM weights (learning rate = 1 × 10^–4) 

and Random Forest parameters. For the stacked ensemble, out-of-fold predictions from the 

best Linear Regression, Random Forest, XGBoost, and LSTM models on the training set are 

used as inputs to an Elastic Net meta-learner. Hyperparameters for Elastic Net (alpha ∈ {0.1, 

1}, l1_ratio ∈ {0.2, 0.5, 0.8}) are tuned on the validation fold to balance bias and variance. 

 

Additional approaches—Neural Prophet with transfer learning and AutoML—are included 

for comparison. Neural Prophet is pretrained on a large synthetic multi-country dataset, then 

fine-tuned on U.S. data with a reduced learning rate (1 × 10^–4) to preserve generalized 

temporal patterns; validation metrics from fine-tuning determine final model selection. 

AutoML (e.g., Auto-Sklearn) automatically tests diverse pipelines (e.g., gradient boosting, 

random forests, KNN) and hyperparameter spaces, with the single best pipeline selected 

according to the lowest validation RMSE. 

 

Final Evaluation is conducted on the hold-out 2020 Q1–2021 Q4 test set. For each model, 

performance is reported in terms of RMSE, MAE, and R² on both GDP and CO₂ forecasts. 

The best cross-sectional (Random Forest), time-series (LSTM or SARIMA), hybrid (LSTM 

+ Random Forest), and AutoML pipelines are compared side by side. In addition, we 

compute Mean Absolute Scaled Error (MASE) for time-series models to contextualize 

accuracy relative to a naïve seasonal forecast. To ensure continuous reliability in a dynamic 

trade environment, an online learning module is implemented: after each quarter, models are 

retrained on the most recent five years of data (sliding window) and validated on the 

subsequent quarter; if validation RMSE degrades by more than 5% relative to the previous 

quarter, an alert triggers hyperparameter retuning or model replacement. This mechanism 

mitigates concept drift due to evolving trade policies, technology cost declines, or external 

shocks (e.g., supply-chain disruptions). 

 

3. Results and Discussion 

 

3.1 Evaluation Results 

 

Economic Forecasting Metrics: RMSE 



   Volume-II, Issue-II (2025)                                                                                                                                   

Pages:113-143 

  

 

 

  P a g e | 134                                                             Pioneer Research Journal of Computing Science  
 

       

 

The RMSE chart shows that Linear Regression has the highest error (~5.8), reflecting its 

inability to capture nonlinear interactions and temporal dependencies present in the features 

(e.g., lagged trade values, policy shifts). Moving to nonlinear tree‐based models, Random 

Forest reduces RMSE substantially (~3.2) by capturing complex feature interactions and 

handling multicollinearity better than linear models. XGBoost further lowers RMSE to ~2.9 

through gradient‐boosted trees that iteratively correct residual errors. SVR and MLP achieve 

intermediate RMSEs (~4.5 and ~3.8, respectively), benefiting from kernel transformations 

(SVR) and nonlinear activation functions (MLP). Classic time‐series models, ARIMA (~4.0) 

and Prophet (~3.9), deliver modest improvements over SVR/MLP by explicitly modeling 

auto‐correlation and seasonality, but they lack flexible nonlinear feature integration. The 

deep‐learning LSTM (~2.7) and GRU (~2.8) outperform ARIMA/Prophet, as their gated 

architectures capture long‐range dependencies in both economic and auxiliary inputs 

(renewable share, R&D spending). Hybrid methods—LSTM + Random Forest (~2.5) and 

Stacked Ensemble (~2.6)—achieve the lowest RMSEs by combining the LSTM’s learned 

temporal embeddings with the Random Forest’s strong tabular learning. Neural Prophet 

(~3.0) also performs well thanks to pretraining on synthetic multi‐country data, while 

AutoML edges out most approaches (~2.4) by automatically selecting and tuning an optimal 

pipeline that best fits the validation patterns. 

 

 

 
Fig. 13 Economic Forecasting Metrics: RMSE 

 

Economic Forecasting Metrics: MAE 

The MAE chart follows a similar ranking to RMSE but provides intuition in absolute error 

terms: Linear Regression (~4.5) lags behind due to its linearity assumption. Random Forest 

(~2.6) and XGBoost (~2.4) reduce mean absolute error by leveraging ensemble tree splits 

that isolate key predictors (e.g., export values, policy indices). SVR (~3.7) and MLP (~3.1) 

perform better than linear models but not as well as tree‐based methods because they rely on 

global kernels/weights rather than localized partitions. ARIMA (~3.5) and Prophet (~3.3) 

improve over SVR/MLP by explicitly modeling seasonally patterned residuals. LSTM (~2.1) 

and GRU (~2.2) show that capturing sequential dependencies (e.g., how a policy change two 

quarters ago affects current GDP) reduces MAE further. Hybrid approaches—

LSTM + Random Forest (~2.0) and Stacked Ensemble (~2.1)—excel by simultaneously 

modeling temporal embeddings and tabular interactions. Neural Prophet (~2.5) benefits from 

transfer learning of temporal trends, and AutoML (~1.9) produces the lowest MAE, 

suggesting an automatically discovered pipeline achieves minimal average error across 

quarters. 
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Fig. 14 Economic Forecasting Metrics: MAE 

 

Economic Forecasting Metrics: R² 

In the R² chart, Linear Regression scores the lowest (~0.65), indicating it explains only 65% 

of GDP variance. Random Forest (~0.82) and XGBoost (~0.85) both substantially increase 

explained variance by modeling nonlinearities and high‐order interactions. SVR (~0.75) and 

MLP (~0.78) bridge the gap between linear and ensemble methods but cannot match 

tree‐based performance due to their reliance on smoothing kernels or polynomial activations. 

ARIMA (~0.80) and Prophet (~0.79) each capture around 80% of variance by explicitly 

modeling temporal structure. The deep‐learning LSTM (~0.88) and GRU (~0.87) further 

boost R² by learning both sequential patterns and exogenous effects. The hybrid 

LSTM + Random Forest achieves ~0.90, demonstrating that combining temporal embeddings 

with feature‐based tree splits best explains variance. Stacked Ensemble (~0.89) and Neural 

Prophet (~0.84) closely follow, while AutoML (~0.91) tops the chart—its automated search 

yields a pipeline that explains over 90% of GDP fluctuations. 

 

 

 
Fig. 15 Economic Forecasting Metrics: R² 

 

Economic Forecasting Metrics: MASE 
The MASE chart normalizes errors relative to a naïve seasonal baseline. Linear Regression 

has MASE > 1.2, meaning it performs worse than a simple seasonal naïve forecast. Random 

Forest (0.8) and XGBoost (0.75) both beat the naïve baseline, validating that they capture 

key patterns beyond seasonality. SVR (1.0) barely matches the naive benchmark, while MLP 
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(0.9) improves slightly. ARIMA (0.95) and Prophet (0.92) also outperform the naïve model, 

highlighting their value in capturing temporal structures. LSTM (0.70) and GRU (0.72) 

deliver the largest reduction in scaled error by modeling both seasonality and exogenous 

features. LSTM + Random Forest (0.65) and Stacked Ensemble (0.68) achieve the best 

MASE values, indicating these hybrids provide the most substantial improvements over 

baseline. Neural Prophet (0.80) and AutoML (0.63) further emphasize that model 

ensembling and automated selection yield forecasts that outperform both human‐designed 

and standard time‐series techniques. 

 

 
Fig . 16 Economic Forecasting Metrics: MASE 

 

Environmental Forecasting Metrics: RMSE 
For CO₂ emissions, the RMSE chart shows Linear Regression (~8.5) is again the weakest, 

unable to account for nonlinear dynamics between trade volumes and emissions. Random 

Forest (~5.4) and XGBoost (~5.1) reduce RMSE by capturing nonlinearities between energy 

mix, import values, and emission drivers. SVR (~6.2) and MLP (~5.9) perform moderately 

well but lag behind ensembles. ARIMA (~5.8) and Prophet (~5.7) improve by learning 

autocorrelations and seasonal patterns in CO₂ data; they surpass SVR/MLP due to explicit 

time‐series structures. The LSTM model (~4.8) and GRU (~4.9) outperform 

ARIMA/Prophet by learning sequential dependencies across multiple exogenous inputs 

(renewable share, policy index). LSTM + Random Forest (~4.5) and Stacked Ensemble 

(~4.6) achieve the lowest environmental RMSEs by combining the LSTM’s temporal 

representation with Random Forest’s nonlinear tabular fitting. Neural Prophet (~5.0) and 

AutoML (~4.3) confirm that both transfer learning and automated pipeline search can 

identify models that best capture the CO₂ emissions dynamics. 
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Fig. 17 Environmental Forecasting Metrics: RMSE 

 

Environmental Forecasting Metrics: MAE 
The MAE chart for emissions mirrors RMSE trends. Linear Regression shows a high MAE 

(~6.8), while Random Forest (~4.2) and XGBoost (~4.0) lower average absolute errors by 

modeling complex feature relationships. SVR (~4.9) and MLP (~4.6) offer incremental 

improvements. Time‐series models—ARIMA (~4.5) and Prophet (~4.3)—continue reducing 

MAE by explicitly modeling seasonality. LSTM (~3.8) and GRU (~3.9) further shrink MAE 

by learning nonlinear temporal dependencies. LSTM + Random Forest (~3.5) and Stacked 

Ensemble (~3.6) achieve the best MAE reductions, verifying that hybrids capture both static 

trade‐to‐emission relationships and sequential context. Neural Prophet (~4.1) benefits from 

pretrained trend components, and AutoML (~3.4) attains the lowest MAE, indicating its 

chosen pipeline captures emission patterns most accurately. 

 

 
Fig. 18 Environmental Forecasting Metrics: MAE 

 

Environmental Forecasting Metrics: R² 
In the R² chart, Linear Regression explains only ~58% of emission variance. Random Forest 

(~0.75) and XGBoost (~0.78) improve explained variance by accounting for nonlinear 

trade‐emission interactions. SVR (~0.65) and MLP (~0.68) perform moderately. ARIMA 

(~0.70) and Prophet (~0.72) further boost R² by modeling seasonality and autocorrelation. 

LSTM (~0.82) and GRU (~0.80) yield substantial gains in explained variance by capturing 

complex temporal patterns and exogenous effects. The LSTM + Random Forest hybrid 

attains ~0.85, while Stacked Ensemble (~0.83) also performs strongly. Neural Prophet 

(~0.77) demonstrates that transfer‐learnt temporal patterns enhance explanatory power, and 
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AutoML (~0.87) tops all models, confirming that its optimized pipeline best explains CO₂ 

emission variability. 

 

 
Fig. 19 Environmental Forecasting Metrics: R2 

 

Environmental Forecasting Metrics: MASE 
Finally, the MASE chart illustrates relative error improvements over a naive seasonal 

forecast. Linear Regression (1.3) performs worse than a naive seasonal baseline, indicating it 

fails to capture seasonal CO₂ patterns. Random Forest (~0.9) and XGBoost (~0.85) each beat 

the naive model, showing that they learn important nonlinear relationships. SVR (~1.1) and 

MLP (~1.0) roughly match or slightly improve over the naive baseline. ARIMA (~1.0) and 

Prophet (~0.98) demonstrate some seasonal modeling benefit but only marginally 

outperform naive naïve. LSTM (~0.78) and GRU (~0.80) show that deep learning captures 

both seasonality and exogenous drivers, materially reducing scaled error. LSTM + Random 

Forest (~0.70) and Stacked Ensemble (~0.72) achieve the lowest MASE values, confirming 

that hybrids provide the most robust improvements over naive forecasting. Neural Prophet 

(~0.88) benefits from pretrained seasonality, and AutoML (~0.68) delivers the best scaled 

error, indicating that its integrated pipeline most effectively captures seasonal, trend, and 

nonlinear emission drivers. 

 

 
 

Fig. 20 Environmental Forecasting Metrics: MASE 

 

Summary 
Across both domains, linear regression consistently performs worst, underscoring the need 
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for models that capture nonlinear and temporal patterns. Tree‐based methods (Random 

Forest, XGBoost) offer significant initial gains by handling feature interactions, while 

time‐series methods (ARIMA, Prophet) deliver improvements through explicit seasonality 

modeling. Deep‐learning sequences (LSTM, GRU) further outperform by learning complex, 

long‐range dependencies and exogenous influences. Finally, hybrids/ensembles 

(LSTM + Random Forest, Stacked Ensemble) and AutoML achieve the best performance, as 

they synergistically combine multiple modeling strengths—temporal embeddings, nonlinear 

tabular fitting, and automated hyperparameter tuning—to minimize error and maximize 

explained variance in both economic and environmental forecasts. 

 

3.2 Discussion and Future Work 

 

The results of this study demonstrate the considerable promise of machine learning models 

in forecasting both economic and environmental impacts of low‐carbon technology trade, yet 

they also highlight important areas for refinement. First, the superior performance of hybrid 

and ensemble approaches—such as the LSTM + Random Forest model and the pipelines 

identified by AutoML—indicates that accurately capturing both temporal dependencies and 

nonlinear feature interactions is essential (Gazi et al., 2025; Reza et al., 2025). However, 

these complex architectures invariably sacrifice interpretability. Although SHAP analyses on 

tree‐based components illuminate the relative importance of predictors like export volumes 

and policy indices, the sequential embeddings generated by LSTM layers remain opaque. 

Recent work by Zhang et al. (2024) suggests that integrating explainable AI techniques—

such as attention mechanisms or layer‐wise relevance propagation—can substantially 

enhance transparency by revealing which specific time steps or features drive individual 

projections [25]. Incorporating such methods into our hybrid pipelines would increase 

stakeholder trust, particularly among policymakers who demand clear rationales when 

adjusting trade incentives or tariffs. Without this level of explainability, decision‐makers 

may hesitate to rely on “black‐box” forecasts for high‐stakes policy choices. 

 

Another critical insight concerns concept drift, which poses a persistent challenge in 

forecasting trade‐related outcomes. As Hossain et al. (2024) and Chouksey et al. (2025) 

observed, shifts in trade policy—such as the enactment or withdrawal of tax credits—and 

abrupt disruptions in global commodity markets can rapidly change underlying relationships, 

causing models trained on historical data to lose accuracy. Although our implementation of 

an online retraining module—whereby models are periodically updated using a rolling 

five‐year window—partially addresses these shifts, Kim et al. (2023) argue that federated 

learning frameworks could further improve adaptability by enabling decentralized model 

updates across multiple data custodians without requiring raw‐data sharing [15]. By 

distributing the learning process among entities such as state energy agencies, private 

manufacturers, and academic institutions, federated learning can incorporate localized policy 

changes—like newly adopted renewable portfolio standards—while preserving proprietary 

data. This approach would allow models to remain responsive to regulatory changes and 

supply‐chain shocks in near real time, enhancing robustness even as underlying economic 

and environmental patterns evolve. 

 

A third opportunity for future work involves addressing spatial heterogeneity. Our current 

models rely on national‐level aggregates (e.g., quarterly GDP contributions and emissions 

totals), but evidence suggests that downscaling to finer geographic units can improve 

forecast accuracy and policy relevance. Smith and Lee (2024) demonstrated that machine 
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learning methods incorporating subnational emissions inventories and local energy 

production data yield more precise regional forecasts, enabling policymakers to tailor 

interventions at the state or county level [23]. Similarly, Patel et al. (2023) showed that 

supplementing socioeconomic indicators with remote‐sensing metrics—such as 

satellite‐derived night‐time light intensity as a proxy for economic activity—enhances the 

quality of carbon emission forecasts by capturing urban growth patterns and localized 

infrastructure changes [18]. Future research should therefore integrate high‐resolution 

environmental and economic datasets—potentially leveraging cloud‐based remote sensing or 

state‐level utility reports—to capture regional variation in renewable integration and 

decarbonization trajectories. Such multimodal data fusion would not only reduce forecast 

error but also provide actionable insights for subnational stakeholders, who bear 

responsibility for implementing localized energy policies. 

 

Additionally, data limitations for emerging low‐carbon technologies remain a substantial 

constraint. Although comprehensive databases—such as UN Comtrade for trade volumes, 

the EIA’s energy data, and the EPA’s emissions inventories—offer valuable inputs, sparse 

and inconsistent reporting for novel technologies (e.g., advanced battery chemistries, 

hydrogen electrolyzers) can hinder model training and inflate forecast uncertainty. Barua et 

al. (2025) noted that underreporting or aggregated classification of new clean energy 

components often forces machine learning models to extrapolate from insufficient 

observations, reducing predictive reliability [6]. Methods for addressing this issue include 

collaborative data curation initiatives—like those proposed by Reza et al. (2025) to 

standardize urban energy datasets—which could be extended to trade and environmental 

reporting [20]. Furthermore, Ruiz and Gomez (2025) advocate for scenario‐based modeling 

frameworks that explicitly quantify uncertainty under different socioeconomic and policy 

pathways, such as alternative carbon tax levels or varying R&D funding scenarios [21]. By 

integrating scenario analysis into the ML pipeline, stakeholders could evaluate a range of 

plausible futures rather than relying on a single point forecast, thereby improving risk 

management and decision‐making under uncertainty. 

 

Finally, expanding the methodological toolkit beyond traditional regression and sequence 

models may yield further improvements. Although our study focused on linear and ensemble 

regressors, ARIMA, Prophet, and recurrent neural networks (LSTM, GRU), emerging 

graph‐based techniques hold promise for capturing network effects among trading partners 

and supply‐chain linkages. Hossain et al. (2025) illustrated the value of Graph Neural 

Networks (GNNs) in fault prediction for New Energy Vehicles by modeling component 

interdependencies [12]; similarly, applying GNNs to a bipartite exporter–importer graph 

could uncover contagion effects in trade shocks—such as when a disruption in a single 

country’s production reverberates through global clean technology supply chains. Moreover, 

reinforcement learning approaches could be explored to optimize dynamic trade policies 

over multiple quarters, balancing economic growth and emissions reduction objectives. 

Amjad et al. (2025) demonstrated that reinforcement learning agents outperform static 

rule‐based maintenance schedules in predictive maintenance tasks [4]; analogous 

frameworks could learn optimal tariff adjustments or subsidy allocations by simulating 

long‐term outcomes. 

 

4. Conclusion 
This study highlights the transformative potential of machine learning (ML) in predicting the 

economic and environmental impacts of low-carbon technology trade in the United States. 
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By integrating public datasets, such as trade statistics from UN Comtrade and emissions 

inventories from the EPA, we demonstrate that advanced ML models significantly 

outperform traditional methods. Ensemble methods like Random Forest and XGBoost excel 

at capturing nonlinear relationships among imports, exports, and policy indices, while time-

series models (ARIMA, Prophet) enhance accuracy through temporal dynamics. Deep 

learning models (LSTM, GRU) improve performance by identifying long-range 

dependencies between trade flows and outcomes like GDP contribution and CO₂ emissions. 

Hybrid approaches (e.g., LSTM combined with Random Forest) achieve the highest 

predictive accuracy in our findings. 

 

Our comprehensive methodology emphasizes rigorous data preprocessing, model 

interpretability, and adaptability. Techniques such as outlier handling and normalization 

ensure data integrity, while explainable AI methods foster trust among policymakers. We 

also address concept drift through online retraining and advocate for federated learning to 

maintain model relevance amid changing trade policies. Accurate forecasts provide 

actionable insights, such as the correlation between clean technology imports and CO₂ 

reductions, which inform trade negotiations and infrastructure investments. Nonetheless, 

challenges like data sparsity and scenario-based uncertainties require additional research to 

refine inputs and improve model accuracy. Lastly, fostering collaboration among 

researchers, regulators, and industry stakeholders is crucial for developing standardized 

practices and ethical frameworks. By pursuing these directions, we can create scalable ML 

solutions that balance economic growth with environmental sustainability in low-carbon 

technology. 
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