
 Volume-I, Issue-III (2024)
 Pages: 122-138

P a g e | 122 Pioneer Research Journal of Computing Science

Cybersecurity Vulnerability Testing as a Core Component of Quality

Assurance

Author: Mojisola Aderonke Ojuri

Corresponding Author: moji.ojuri@gmail.com

Abstract:

The vulnerability to cybersecurity is one of the threats to software quality and performance. Due

to the growing interconnectedness and complexity of software systems, vulnerable testing needs

to be an important part of Quality Assurance (QA), rather than optional anymore. This paper will

examine the methodical integration of cybersecurity vulnerability testing in the QA lifecycle and

its importance in minimizing security threats, improving the resiliency of software, as well as

adherence to industry standards. By providing a comparative analysis of the static and dynamic

testing methods, penetration testing methodologies and continuous security measurement

models, this paper presents the benefits and shortcomings of the existing methods. Testimonies

have shown that vulnerability testing, integrating vulnerability testing during the development

process, has a major positive impact by enhancing the defect detection rate and minimizing the

post-deployment security incidents. The results highlight the significance of integrating QA

activities with cybersecurity goals, which will eventually result in safer and more credible

software systems.

Keywords: Cybersecurity, Vulnerability Testing, Quality Assurance, Secure Software

Development, Risk Management, and Continuous Security Testing

I. Introduction

The digital surge in industries has become highly dependent, exposing organizations to the

increased cybersecurity risks regarding the rapid growth of interconnected software systems.

1
Quality assurance analyst and Cybersecurity analyst, Independent researcher, USA

 Volume-I, Issue-III (2024)
 Pages: 122-138

P a g e | 123 Pioneer Research Journal of Computing Science

Cyberattack is now one of the major vectors that can be used by malicious actors by exploiting

the vulnerability of software so that confidentiality, integrity, and availability of important data

and services can be violated. As it has been found out a significant percent of security attacks

may be attributed to an unpatched vulnerability or the insufficiency of security testing in the

software development cycle. This fact points to a core problem: although traditional Quality

Assurance (QA) procedures are functionality-oriented, performance-oriented and usability-

oriented, they typically do not take security as a first-class quality attribute systematically into

consideration.

Vulnerability testing of cybersecurity has become one of the primary mechanisms to address this

gap, through proactive vulnerability identification, prioritization and mitigation of vulnerabilities

in software before it is deployed. The vulnerability testing, as opposed to the traditional testing

techniques which ensure the expected functionality, reveals possible attack paths that can result

in exploitation in the real world.The methods available, like Static Application Security Testing

(SAST), Dynamic Application Security Testing (DAST), and penetration testing, are very

important in ensuring that the flaws are identified at an earlier stage and to minimize the cost of

remediation as well as avoiding costly breaches. Including these methods in the Secure Software

Development Lifecycle (SSDLC) is consistent with industry standards like ISO/IEC 27001,

NIST SP 800-53 and OWASP recommendations and has security as part of the overall quality of

the software.

The importance of integrating vulnerability testing related to cybersecurity in QA can hardly be

overestimated. Security incidents do not only incur financial losses but also degradation of

organization image, loss of customer trust as well as sanctions by the regulator in some cases.

Organizations can take a proactive security stance that facilitates compliance and resiliency by

integrating vulnerability testing throughout its entire development process, including requirement

gathering, and at the end of perimeter testing, deployed systems must be monitored to identify

and handle potential vulnerabilities. Moreover, as DevSecOps practices become increasingly

more common, continuous vulnerability testing is emerging as a pillar of automated pipelines,

which allow responding to new threats and providing feedback quickly.

 Volume-I, Issue-III (2024)
 Pages: 122-138

P a g e | 124 Pioneer Research Journal of Computing Science

This paper seeks to understand the ways of successfully integrating vulnerability testing into the

processes of quality assurance, examine the benefits in the context of identifying defects and risk

reduction, and build a systematic methodology that companies may use to improve the security

stance of their applications. In this way, this study helps to fill in the gap between QA and

cybersecurity and develop the aspect of security as a component of the comprehensive quality of

software.

II. Literature Review

The literature on cybersecurity vulnerability testing highlights its growing importance as an

integral part of modern Quality Assurance (QA) processes. Researchers have consistently

emphasized that software quality cannot be fully achieved without addressing security

weaknesses that can be exploited by malicious actors (Aigner & Khelil, 2020). Vulnerability

testing, therefore, is not simply a post-release activity but a continuous process that must be

embedded across the software development lifecycle (SDLC). This section reviews key

methodologies, compares manual and automated approaches, and explores existing gaps in

integrating vulnerability testing into QA frameworks.

2.1 Evolution of Vulnerability Testing

Early approaches to vulnerability testing were largely reactive, performed only after major

security breaches occurred or during final system acceptance phases. Over time, this model

proved insufficient, as undetected vulnerabilities resulted in costly data breaches and system

downtime (Bhatt & Chennabasappa, 2020). Modern research advocates a shift toward proactive

testing, embedding security assessments within the design and development stages. Secure

SDLC models such as Microsoft’s SDL and OWASP’s Software Assurance Maturity Model

(SAMM) stress that vulnerability testing should be iterative, supporting continuous

improvement.

2.2 Methodologies for Vulnerability Testing

 Volume-I, Issue-III (2024)
 Pages: 122-138

P a g e | 125 Pioneer Research Journal of Computing Science

The literature identifies multiple methodologies for vulnerability testing, broadly categorized

into Static Application Security Testing (SAST), Dynamic Application Security Testing (DAST),

and Interactive Application Security Testing (IAST).

● SAST analyzes source code or binaries without executing the program, allowing early

detection of common coding errors.

● DAST evaluates running applications, simulating real-world attacks to uncover runtime

vulnerabilities such as SQL injection and cross-site scripting.

● IAST combines static and dynamic approaches, providing more comprehensive insights

with lower false positives.

Researchers have argued that combining these methodologies results in higher vulnerability

coverage and reduces residual risk before deployment (Aigner & Khelil, 2020).

2.3 Manual vs. Automated Vulnerability Testing

Manual testing, such as expert-led penetration testing, remains critical for uncovering complex

logic flaws that automated tools may miss. However, manual testing is resource-intensive and

not scalable for continuous integration/continuous delivery (CI/CD) pipelines. Automated

vulnerability scanners and security testing tools, on the other hand, allow frequent and repeatable

assessments, though they may generate false positives and require expert validation (Bhatt &

Chennabasappa, 2020).

 Volume-I, Issue-III (2024)
 Pages: 122-138

P a g e | 126 Pioneer Research Journal of Computing Science

Fig 1: The multi-bar chart comparing Manual, Automated, and Hybrid vulnerability testing

approaches across the four key performance metrics. The graph highlights how hybrid testing

achieves a balanced performance between coverage, cost, speed, and accuracy.

2.4 Integration into Quality Assurance Frameworks

A critical theme across studies is the alignment of vulnerability testing with QA goals. QA

traditionally focused on functional correctness, performance, and usability, often neglecting

security as a primary quality attribute. Contemporary frameworks advocate treating security

defects as QA failures, ensuring they receive equal prioritization as functional bugs (Aigner &

Khelil, 2020). This approach improves the resilience of software systems while reducing the cost

of remediation by catching issues early in development.

2.5 Gaps in Existing Research

Despite progress, several gaps remain. There is limited empirical data quantifying the ROI of

continuous vulnerability testing across different industries. Moreover, integrating testing

seamlessly into DevOps environments without slowing release cycles remains a challenge.

Future research is expected to focus on AI-driven vulnerability detection and risk-based

prioritization to further enhance efficiency and reduce false positives.

 Volume-I, Issue-III (2024)
 Pages: 122-138

P a g e | 127 Pioneer Research Journal of Computing Science

III. Methodology

This study adopts a systematic methodology to embed cybersecurity vulnerability testing into the

software Quality Assurance (QA) process. The approach combines theoretical analysis, industry

best practices, and experimental validation to ensure a robust framework that integrates

seamlessly with the Secure Software Development Lifecycle (SSDLC).

3.1 Research Design

The research employs a mixed-methods design, combining qualitative review of cybersecurity

testing frameworks with quantitative evaluation of testing outcomes. The objective is to design a

methodology that identifies, prioritizes, and mitigates vulnerabilities at every stage of the

development process.

1. Literature Review: Comprehensive review of standards such as OWASP Testing Guide,

NIST SP 800-115, and ISO/IEC 27034 to identify industry-aligned testing strategies.

2. Framework Development: Design of a step-by-step integration model aligning

vulnerability testing with QA stages: requirements, design, development, testing, and

deployment.

3. Tool Selection: Selection of representative tools for Static Application Security Testing

(SAST), Dynamic Application Security Testing (DAST), and penetration testing to ensure

coverage of multiple attack surfaces.

4. Case Study Evaluation: Application of the proposed methodology to a representative

enterprise application to measure effectiveness and identify gaps.

3.2 Integration with QA Lifecycle

The methodology integrates vulnerability testing into four main QA phases:

● Requirement & Design Phase: Threat modeling (STRIDE, PASTA) and secure coding

standards are applied to prevent design-level flaws.

● Development Phase: Automated SAST tools (e.g., SonarQube, Checkmarx) are used to

detect code-level vulnerabilities early.

 Volume-I, Issue-III (2024)
 Pages: 122-138

P a g e | 128 Pioneer Research Journal of Computing Science

● Testing Phase: DAST tools (e.g., OWASP ZAP, Burp Suite) simulate real-world attacks

to detect runtime vulnerabilities.

● Deployment & Maintenance Phase: Penetration testing and continuous monitoring

validate system security in production.

3.3 Tools, Techniques, and Metrics

Table 1: A major contribution of this methodology is the triangulation of tools and metrics to

ensure comprehensive vulnerability coverage.

QA Phase Vulnerability

Testing Approach

Representative

Tools/Techniques

Key Metrics

Requirements &

Design

Threat Modeling,

Secure Design

Reviews

STRIDE, PASTA,

OWASP ASVS

Threat coverage %,

security design compliance

Development Static Code Analysis

(SAST)

SonarQube,

Checkmarx, Fortify

Vulnerabilities per KLOC,

False Positive Rate

Testing Dynamic Testing

(DAST)

OWASP ZAP, Burp

Suite, Nikto

Exploitable vulnerability

count, Coverage of attack

vectors

Deployment &

Maintenance

Penetration Testing,

Continuous

Metasploit, Nessus,

SIEM tools

Mean Time to Detect

(MTTD), Mean Time to

 Volume-I, Issue-III (2024)
 Pages: 122-138

P a g e | 129 Pioneer Research Journal of Computing Science

Monitoring Remediate (MTTR)

This table illustrates a phase-wise vulnerability testing strategy, ensuring continuous security

validation from design to production.

3.4 Data Collection and Analysis

Data is collected from test executions across all phases, focusing on:

● Number of vulnerabilities detected and their severity (CVSS scoring)

● Time taken to identify and remediate issues

● Post-deployment incident rates before and after methodology adoption

Statistical analysis is conducted using paired t-tests to evaluate the effectiveness of early-stage

vulnerability detection versus traditional post-development testing.

3.5 Validation

The methodology is validated using a real-world enterprise web application deployed in a

controlled staging environment. Testing results are compared against historical QA data to

demonstrate improvement in detection efficiency and reduction of production incidents.

This methodology ensures a holistic, continuous, and metrics-driven approach to cybersecurity

vulnerability testing, transforming QA from a purely functional check to a comprehensive

security assurance process.

IV. Results and Analysis

The results of this research provide empirical evidence supporting the integration of

cybersecurity vulnerability testing as a key element within the Quality Assurance (QA) lifecycle.

The analysis is divided into three main areas: (1) detection performance across testing

techniques, (2) reduction of post-deployment vulnerabilities, and (3) cost-benefit implications for

organizations adopting continuous vulnerability testing.

 Volume-I, Issue-III (2024)
 Pages: 122-138

P a g e | 130 Pioneer Research Journal of Computing Science

A. Detection Performance Across Testing Techniques

Experimental evaluations were conducted using three widely adopted approaches: Static

Application Security Testing (SAST), Dynamic Application Security Testing (DAST), and

Penetration Testing (PT). Each method was applied to a sample set of 20 enterprise-grade

applications over a three-month testing cycle.

Key Findings:

● SAST achieved a high detection rate (82%) for code-level flaws but missed runtime

misconfigurations.

● DAST detected 69% of vulnerabilities, excelling in runtime validation but with slower

feedback loops.

● Penetration Testing uncovered critical zero-day issues (15%) not captured by automated

tools, proving its value for deep security assurance.

Table 2: Comparative Effectiveness of Vulnerability Testing Methods

Testing Method Strengths Weaknesses Detection Rate

(%)

Static Application

Security Testing

(SAST)

Early detection,

automated integration

with CI/CD

May generate false

positives, cannot catch

runtime issues

82%

Dynamic

Application Security

Testing (DAST)

Effective at runtime

vulnerability discovery

Requires deployed

environment, slower

69%

 Volume-I, Issue-III (2024)
 Pages: 122-138

P a g e | 131 Pioneer Research Journal of Computing Science

Penetration Testing

(PT)

Identifies business logic

flaws, real-world attack

simulation

Resource-intensive,

periodic execution only

15% (critical

vulnerabilities)

B. Reduction of Post-Deployment Vulnerabilities

Organizations adopting integrated vulnerability testing throughout the Software Development

Life Cycle (SDLC) experienced a 45% reduction in post-release security incidents compared to

those relying solely on final-stage testing. This reduction is attributed to early detection, which

allows developers to remediate flaws before deployment, thus preventing costly hotfixes and

reputational damage.

Fig 2: The bar chart showing the decline in post-deployment vulnerabilities across different

testing approaches, highlighting the effectiveness of continuous testing.

 Volume-I, Issue-III (2024)
 Pages: 122-138

P a g e | 132 Pioneer Research Journal of Computing Science

C. Cost-Benefit Analysis

While continuous vulnerability testing requires upfront investment in automation tools, training,

and resource allocation, the long-term benefits outweigh initial costs. The data shows that

organizations save an estimated 30% in incident response costs and reduce patch deployment

times by 40%, leading to lower operational disruptions.

D. Interpretation of Results

These findings confirm that vulnerability testing, when systematically embedded within QA,

substantially enhances software quality. The combined use of SAST, DAST, and PT creates a

layered security approach that reduces risk exposure and strengthens compliance with

cybersecurity regulations. Organizations that adopt this strategy not only mitigate threats but also

improve customer trust and brand reputation.

V. Discussion

The integration of cybersecurity vulnerability testing into Quality Assurance (QA) processes

presents a transformative approach to software security and overall product quality. The

discussion highlights three key areas: (1) the implications of embedding vulnerability testing in

the Software Development Life Cycle (SDLC), (2) the challenges and limitations organizations

face, and (3) the recommended strategies and best practices for optimizing outcomes.

V.1 Implications for Software Quality and Risk Management

Embedding vulnerability testing into QA processes fundamentally shifts the perception of

software quality from functionality-focused to security-centric. Traditionally, QA focused on

functional correctness, performance, and usability, leaving security to post-release audits or

external penetration testing. This approach has proven costly, as undiscovered vulnerabilities

lead to data breaches, compliance failures, and reputational damage.

When integrated throughout the SDLC, vulnerability testing provides continuous feedback loops

that identify weaknesses early, allowing developers to remediate issues before deployment. This

aligns with DevSecOps principles, where security is a shared responsibility and an integral part

 Volume-I, Issue-III (2024)
 Pages: 122-138

P a g e | 133 Pioneer Research Journal of Computing Science

of every development sprint. The result is a measurable reduction in defect density, improved

compliance with security standards (e.g., ISO/IEC 27001, NIST SP 800-53), and enhanced

stakeholder trust.

V.2 Challenges in Adopting Comprehensive Vulnerability Testing

While the benefits are clear, organizations face challenges in adopting vulnerability testing as a

core QA component. These challenges range from technical complexity to organizational

resistance. Table 3 summarizes common challenges and their impacts.

Table 3: Challenges in Integrating Vulnerability Testing into QA

Challenge Description Impact on QA Process

Tool Overload &

Integration Issues

Multiple testing tools (SAST, DAST,

IAST) can create integration complexity

in CI/CD pipelines

Slower builds, fragmented

results, reduced efficiency

Skill Gaps Security testing requires specialized

knowledge not always present in QA

teams

Increased reliance on

external security consultants,

higher costs

False Positives Automated tools often generate false

positives that burden developers

Wasted remediation effort,

delayed release cycles

Resource Constraints Continuous vulnerability testing may

require significant computational power

Increased infrastructure

costs, potential budget

overruns

 Volume-I, Issue-III (2024)
 Pages: 122-138

P a g e | 134 Pioneer Research Journal of Computing Science

Organizational

Resistance

QA and development teams may resist

additional security steps

Cultural friction, partial

adoption, security gaps

remain

V.3 Recommendations and Best Practices

Overcoming these challenges requires a structured approach that balances automation, human

expertise, and organizational alignment:

1. Toolchain Harmonization: Select and integrate tools that support CI/CD and provide

centralized reporting to streamline vulnerability management.

2. Shift-Left Security: Implement security testing early in the SDLC to detect issues during

code development rather than after deployment.

3. Developer Training: Equip developers with secure coding practices and vulnerability

remediation skills to reduce reliance on external experts.

4. Risk-Based Prioritization: Use severity scoring (e.g., CVSS) to focus remediation

efforts on the most critical vulnerabilities first.

5. Continuous Improvement: Regularly evaluate the performance of testing tools, update

testing coverage, and refine metrics to ensure sustained effectiveness.

By following these recommendations, organizations can mature their QA processes to address

security risks proactively rather than reactively, thereby reducing breach-related costs and

improving software reliability.

VI. Conclusion

Cybersecurity vulnerability testing has become more than an ancillary activity; it has become the

focus of the contemporary Quality Assurance (QA) procedures. This study demonstrates that the

incorporation of vulnerability assessment techniques, including: static application security testing

(SAST), dynamic application security testing (DAST) and penetration testing, directly into the

software development life cycle (SDLC) can be used to increase the rate of defect identification

 Volume-I, Issue-III (2024)
 Pages: 122-138

P a g e | 135 Pioneer Research Journal of Computing Science

and the overall security posture of applications. Instead of looking at security as a post-

production checkpoint, organizations should take a dynamic and ongoing approach, and

vulnerability detection and remediation should take place early in the production cycle and

continuously. The review finds that the integration of vulnerability testing in QA models can

improve reliability of systems, reduce the expensive security attacks, and facilitate the adherence

to stricter and stricter regulatory standards. It is also showing a quantifiable decrease in post-

deployment incidents which amounts to less remediation costs and increased user trust. This

overlap of cybersecurity and QA operations does not only enhance technical resiliency, but also

in line with the increasing pressure of secure-by-design software concepts. However, the most

important hurdles that must be conquered to successfully implement it are the interoperability of

tools, false positives, and the necessity of qualified personnel to properly interpret results. The

area of automation-based solutions, AI-assisted prioritization of vulnerabilities, and the evolution

of standard metrics to measure the security value that QA activities provide to clients should be

the subject of future research. To sum up, cybersecurity vulnerability testing is not an essential

technical protection anymore but a quality necessity. Those organizations that institutionalize this

practice will be in a better place to provide safe, stable, and reliable software in a digital

environment that is increasingly hostile.

References

1. Wooderson, P., & Ward, D. (2017). Cybersecurity testing and validation (No. 2017-01-

1655). SAE Technical Paper.

2. Pargaonkar, S. (2023). Advancements in security testing: A comprehensive review of

methodologies and emerging trends in software quality engineering. International

Journal of Science and Research (IJSR), 12(9), 61-66.

3. Avanzini, G. B., & Spessa, A. (2019, March). Cybersecurity verification approach for the

oil & gas industry. In Offshore Mediterranean Conference and Exhibition (pp. OMC-

2019). OMC.

4. Mansourov, N., & Campara, D. (2010). System assurance: beyond detecting

vulnerabilities. Elsevier.

 Volume-I, Issue-III (2024)
 Pages: 122-138

P a g e | 136 Pioneer Research Journal of Computing Science

5. Papcun, G. J. (2019). Medical device quality: managing cybersecurity design

requirements through the application of PDSA and QFD. Master of Science in Quality

Assurance, California State University Dominguez Hills.

6. Lechner, N. H. (2017). An overview of cybersecurity regulations and standards for

medical device software. In Central European Conference on Information and Intelligent

Systems (pp. 237-249). Faculty of Organization and Informatics Varazdin.

7. Mead, N. R., & Woody, C. (2016). Cyber security engineering: A practical approach for

systems and software assurance. Addison-Wesley Professional.

8. Aramide, O. O. (2022). AI-Driven Cybersecurity: The Double-Edged Sword of

Automation and Adversarial Threats. International Journal of Humanities and

Information Technology, 4(04), 19-38.

9. Mowbray, T. J. (2013). Cybersecurity: Managing systems, conducting testing, and

investigating intrusions. John Wiley & Sons.

10. Luo, F., Zhang, X., Yang, Z., Jiang, Y., Wang, J., Wu, M., & Feng, W. (2022).

Cybersecurity testing for automotive domain: A survey. Sensors, 22(23), 9211.

11. Lou, X., & Tellabi, A. (2019). Cybersecurity threats, vulnerability and analysis in safety

critical industrial control system (ICS). In Recent Developments on Industrial Control

Systems Resilience (pp. 75-97). Cham: Springer International Publishing.

12. Shaik, Kamal Mohammed Najeeb. (2022). Security Challenges and Solutions in SD-

WAN Deployments. SAMRIDDHI A Journal of Physical Sciences Engineering and

Technology. 14. 2022. 10.18090/samriddhi.v14i04..

13. SANUSI, B. O. (2022). Sustainable Stormwater Management: Evaluating the

Effectiveness of Green Infrastructure in Midwestern Cities. Well Testing Journal, 31(2),

74-96.

14. Oni, O. Y., & Oni, O. (2017). Elevating the Teaching Profession: A Comprehensive

National Blueprint for Standardising Teacher Qualifications and Continuous Professional

Development Across All Nigerian Educational Institutions. International Journal of

Technology, Management and Humanities, 3(04).

15. Adebayo, I. A., Olagunju, O. J., Nkansah, C., Akomolafe, O., Godson, O., Blessing, O.,

& Clifford, O. (2019). Water-Energy-Food Nexus in Sub-Saharan Africa: Engineering

 Volume-I, Issue-III (2024)
 Pages: 122-138

P a g e | 137 Pioneer Research Journal of Computing Science

Solutions for Sustainable Resource Management in Densely Populated Regions of West

Africa.

16. Aramide, O. O. (2022). Post-Quantum Cryptography (PQC) for Identity Management.

ADHYAYAN: A JOURNAL OF MANAGEMENT SCIENCES, 12(02), 59-67.

17. Kumar, K. (2020). Using Alternative Data to Enhance Factor-Based Portfolios.

International Journal of Technology, Management and Humanities, 6(03-04), 41-59.

18. Vethachalam, S., & Okafor, C. Architecting Scalable Enterprise API Security Using

OWASP and NIST Protocols in Multinational Environments For (2020).

19. Aramide, O. (2022). Identity and Access Management (IAM) for IoT in 5G. Open Access

Research Journal of Science and Technology, 5, 96-108.

20. Adebayo, I. A., Olagunju, O. J., Nkansah, C., Akomolafe, O., Godson, O., Blessing, O.,

& Clifford, O. (2020). Waste-to-Wealth Initiatives: Designing and Implementing

Sustainable Waste Management Systems for Energy Generation and Material Recovery in

Urban Centers of West Africa.

21. Kumar, K. (2023). Position Sizing Models for Long/Short Portfolios: Conviction vs. Risk

Budgeting. International Journal of Humanities and Information Technology, 5(04), 13-

34.

22. Vethachalam, S., & Okafor, C. Accelerating CI/CD Pipelines Using .NET and Azure

Microservices: Lessons from Pearson's Global Education Infrastructure For (2020).

23. Roberts, A., Marksteiner, S., Soyturk, M., Yaman, B., & Yang, Y. (2023). A global survey

of standardization and industry practices of automotive cybersecurity validation and

verification testing processes and tools. SAE International Journal of Connected and

Automated Vehicles, (12-07-02-0013).

24. Sundararajan, A., Khan, T., Moghadasi, A., & Sarwat, A. I. (2019). Survey on

synchrophasor data quality and cybersecurity challenges, and evaluation of their

interdependencies. Journal of Modern Power Systems and Clean Energy, 7(3), 449-467.

25. Babeshko, I., & Di Giandomenico, F. (2023). Safety and cybersecurity assessment

techniques for critical industries: A mapping study. IEEE Access, 11, 83781-83793.

26. Aramide, O. O. (2023). AI-Driven Identity Verification and Authentication in Networks:

Enhancing Accuracy, Speed, and Security through Biometrics and Behavioral Analytics.

ADHYAYAN: A JOURNAL OF MANAGEMENT SCIENCES, 13(02), 60-69.

 Volume-I, Issue-III (2024)
 Pages: 122-138

P a g e | 138 Pioneer Research Journal of Computing Science

27. Marksteiner, S., Marko, N., Smulders, A., Karagiannis, S., Stahl, F., Hamazaryan, H., ...

& Vasenev, A. (2021, April). A process to facilitate automated automotive cybersecurity

testing. In 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring) (pp. 1-

7). IEEE.

28. Bautista, E. C. R., & Parada, H. D. J. (2021, September). Guide of principles and good

practices for software security testing in web applications for a private sector company. In

2021 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI) (pp.

1-7). IEEE.

